

The Pattern
Organization

Designed for change

M a x S t e w a r t

M a x S t e w a r t

T h e
 P a t t e r n

 O r g a n i z a t i o n

D e s i g n e d f o r c h a n g e

Published by Decomplexity Associates Ltd
First published 2004

Copyright © 2004 by Max Stewart

The right of Max Stewart to be identified as the author of this work has been
asserted by him in accordance with the UK Copyright, Designs and Patents Act
1988

Set in Times New Roman

European Acrobat edition - ISBN 0-9540062-7-5

also available in US Acrobat edition - ISBN 0-9540062-8-3
and
European printed edition – bound with colour illustrations – ISBN 0-9540062-6-7

Acrobat editions may be reproduced, stored for later retrieval or transmitted if the
original Adobe® Acrobat® format is retained and authorship acknowledged.
Conversion to editable form or editing in any way is a breach of copyright.
Printed editions may not – in whole or in part – be copied, stored in a retrieval
system or transmitted without prior written permission of the publisher.

This book complements the author’s The Coevolving Organization – poised
between order and chaos which is available through booksellers:
ISBN 0-9540062-0-8 (European edition – bound with full-colour plates)

or copyable free from www.decomplexity.com with different line illustrations
and without colour plates:
ISBN 0-9540062-1-6 (European Acrobat edition)
ISBN 0-9540062-2-4 (US Acrobat edition)

and

The Robust Organization – highly optimized tolerance which is available through
booksellers:
ISBN 0-9540062-3-2 (European edition – bound with colour illustrations)

or copyable free from www.decomplexity.com with black-and-white line
illustrations:
ISBN 0-9540062-4-0 (European Acrobat edition)
ISBN 0-9540062-5-9 (US Acrobat edition)

http://www.decomplexity.com/

AUTHOR

Max Stewart was educated at the Universities of Wales and Cambridge. He wrote
the first and widely praised non-specialist account of the application of relational
database principles to systems design – something that later became better known
as Data Analysis. He was at one time IT Director for the Scottish operations of
Leyland Vehicles and later spent many years with Mars, Incorporated. He is a
Principal with Decomplexity Associates and lives in Rutland, England’s smallest
county.

COPYRIGHT AND TRADEMARKS

Copyright © Max Stewart 2004

Decomplexity is a trading name, and Decomplexity™, decomplex™ and
derivative names (of processes to improve business effectiveness) are trademarks
of Decomplexity Associates Ltd. Adobe® and Acrobat® are registered
trademarks of Adobe Systems Inc. Other trademarks and trading names are
acknowledged.

Decomplexity Associates Ltd is a company incorporated in England and Wales.

The smith also sitting by the anvil, and considering the iron
work, the vapour of the fire wasteth his flesh, and he
fighteth with the heat of the furnace: the noise of the
hammer and the anvil is ever in his ears, and his eyes look
still upon the pattern of the thing that he maketh; he
setteth his mind to finish his work, and watcheth to polish
it perfectly.

 Wisdom of Jesus Son of Sirach 38 v28
 King James version (Apocrypha)

CONTENTS

Preface

Acknowledgements

Chapter 1 – Introduction

Chapter 2 – Patterns

Chapter 3 – Decomposition patterns

Chapter 4 – Organization and business processes

Chapter 5 – Buffering

Chapter 6 – Buffer placement

Chapter 7 – From IT to organization

Chapter 8 – Reference material

Chapter 9 – Questions and answers

Bibliography

Index

Figures
Figure 1 - scope of simulation.. 18
Figure 2 - class and object diagrams .. 29
Figure 3 - Adaptor pattern diagram .. 31
Figure 4 - Adaptor pattern OMT ... 32
Figure 5 - Facade pattern diagram ... 33
Figure 6 - Facade pattern OMT... 34
Figure 7 - Mediator pattern diagram ... 35
Figure 8 - Mediator pattern OMT .. 36
Figure 9 - Chain of responsibility diagram ... 37
Figure 10 - Chain of responsibility OMT... 38
Figure 11 - Bridge pattern 'before' diagram ... 40
Figure 12 - Bridge pattern 'after' diagram ... 40
Figure 13 - Bridge pattern OMT.. 41
Figure 14 - HOT with a. equal and b. centred probability of sparks ... 44
Figure 15 - Trees and semi-lattices .. 59
Figure 16 - Military commands form a language... 60

The Pattern Organization i

PREFACE

T his book is the third of a series by the present author on business
organization. The first of the three – The Coevolving Organization – was
published in 2001. It tried to answer one fundamental business question –

how decentralized should an organization be? – using developments in physics
and theoretical biology which emerged during 1988-1995. It described how
businesses could be positioned, poised and reactive, on the boundary between
stability and anarchy, using the concepts of ‘edge of chaos’ (EOC) and ‘self-
organized criticality’ (SOC), and tried to show what benefits might accrue from
attaining this nirvana. The question of whether the edge of chaos was the optimal
point under all conditions to which to decentralize was left unresolved. If, in
particular, instead of relying on a random self-organization process to manage
decentralization, we actively designed the organization, could the optimal point
be shifted even more in the direction of decentralization without compromising
the stability of the organization? In the late 1990s, the complete answer was
simply not known.

 But between 1998 and 2003, something new and related was discovered
and then explored: highly optimized tolerance (HOT). HOT does not supersede
EOC and SOC. Instead, it allows us to exploit the idea of decoupling parts of an
organization (divisions, departments, even individuals) such that the decoupled
parts can be even more responsive than with EOC/SOC. More significantly, HOT
also highlights the role of deliberate design – the antithesis of self-organization.
Self-organization or, alternatively, restructuring using a simple and limited
amount of management intervention, can be attempted following the EOC/SOC
principles outlined in The Coevolving Organization. But if a business is
decoupled further using HOT principles, it is possible for the decoupled parts to
be even more responsive than would be possible with the EOC/SOC ideas alone.
It implies minimizing how the decoupled parts can affect one another and having
a good understanding of the likely business risks to which each part is subject.
 The first two books thus described how to position an organization at an
optimal level of decentralization and what could be gained from doing so. But to
those needing to implement the restructuring of a business, this may have
sounded like airy-fairy nonsense. How could any fanciful theory take into account
real business processes, for example?
 This next book fills the gap. The processes of a business and its
organization staff structure are, or should be, very closely related. Some
businesses even rightly pride themselves on having transformed their organization
structure into one which is closely in line with their business process structure.
Their organization charts and business process charts look very similar. But
business processes themselves will change. Some will evolve smoothly in a
planned way as supply, manufacture and distribution evolve. Others will be
forced to change rapidly in response to competitors' threats. Amending business
processes in a hurry can be perilous, particularly if the business is accustomed to
gradual change. If we want to build an organization which is decentralized to
some optimal point arrived at via edge of chaos and highly optimized tolerance
considerations,

ii Preface

 how do we put together the new organization from the bottom up so
that the organization and business processes are aligned?

 how do we ensure that, when business processes themselves change,

the organization and IT systems are not left flailing around and unable
to keep up? The aim of applying EOC and HOT concepts to
organizations was to engender responsiveness without instability. How,
therefore, can we ensure that when business processes are changed, the
various parts of an organization continue to work and communicate
with each other effectively?

These questions inevitably raise a further one: when building from ‘bottom up’,
how far down is ‘bottom’? In other words, to what level of granularity do we
descend in order to have the foundation on which to build upwards: individuals,
teams, small departments, business processes or what? The organizational
foundation on which the material which follows is constructed is roughly the size
of a small team. One characteristic of such a team is that it is responsible for
running a single discrete business process; further decomposition of this process
and its supporting organization into smaller semi-independent pieces would be
pointless since each such smaller sub-team would not be able to make decisions
without reference to the others.
 The final book in this series, The Emergent Organization, will cover true
bottom-up construction – the evolution of an organization from rudimentary
business process fragments. It will describe how to grow an organization from
seed using a selection of elementary business-process building blocks. The
growth of each process must take account of its future neighbours; it must not
merely evolve to meet its own selfish ends. The processes and their supporting
teams also need to ‘grow towards the light’: some long-term business policy or
statement of ethics like the Five Principles of Mars plus some intermediate goals
such as Balanced Scorecard objectives. In other words, we want to create a living
business organization from scratch, or following the dismemberment of its failing
predecessor, using long-term policies as attractors (desirable patterns). This
emergent organization must then continue to evolve of its own accord. Since
business policy can specify the degree to which decision making should be
decentralized and the degree to which different parts of the organization compete
with each other or otherwise, these attractors can mould a coevolving
organization.
 As with the previous two books, the background material is not readily
accessible to most managers. But unlike the previous two, the present book draws
on ideas from architecture and from object-oriented IT system design rather than
from theoretical physics and evolutionary biology. The first detailed exposition of
the usefulness and ubiquity of patterns was made by practising architect and
mathematician Chris Alexander in the 1960s. His ideas were later picked up by IT
program designers who were seeking ways to design reusable chunks of
programming so that subsequent changes did not necessitate wholesale redesign
or inelegant fudges.

Max Stewart
Rutland, UK
October 2004

Acknowledgements iii

ACKNOWLEDGEMENTS

T

he present book would not exist without the pioneering work of architect
Christopher Alexander and of the ‘object-orientated Gang of Four’ – Erich
Gamma, Richard Helm, Ralph Johnson and John Vlissides – who

recognised the value of Alexander’s ideas to revolutionise IT systems design.
Their ideas have been used, built upon and are freely acknowledged in the text.
Apart from brief extracts for comment, no copyright material has been
reproduced but the names and diagrams of the various buffer patterns have been
made consistent with those of the Gang of Four’s definitive work “Design
Patterns - Elements of Reusable Object-Oriented Software” (Addison-Wesley
1994) in order to help IT practitioners already familiar with this latter book.
 The prefatory extract from the Authorized Version of the Bible (The King
James Bible), the rights in which are vested in the Crown, is reproduced by
permission of the Crown’s Patentee, Cambridge University Press.

The Pattern Organization 1

CHAPTER 1

INTRODUCTION

T

he thread underlying all four books in this series is flexibility. The first two
demonstrated how to split an organization into discrete parts – which could
in principle even be down to the level of individual people – such that

decisions could be made and implemented fast. This third book tackles the
problem of putting an organization together such that organization structure can
change quickly and without loss of effectiveness. In other words, until now we
have been trying to identify exactly where and how an organization can be split
such that the resulting pieces (‘objects’) are as autonomous as possible consistent
with the overall stability of the business. Three issues were left outstanding:

 how can organizational objects be insulated from each other such that
internal changes in one have minimal effect on any of the others

 hitherto, the connections between objects have been considered at a
superficial level as links (C-couplings) with varying strengths. But what
happens when several links conspire to work together?

 how can we catalyze an organization to evolve by growing small fragments
of business processes in such a way that the growth upwards and sideways
is guided by business policy

What follows addresses the first two issues, the first in particular. Its aim is to
improve our ability to change an organization easily and quickly in response to
external stimuli or internal decisions. Hitherto, we have used a ‘language’ based
on Stu Kauffman’s NKCS landscape modelling ideas in order to describe the
dynamic behaviour of coevolving organizational objects. We also need a
language – a different one – in order to describe the building of organizational
objects which ideally can behave as autonomously as possible. This will be a
different language: a combination of architect Chris Alexander’s Pattern
Language to provide the definition of a business object (or collection of linked
objects) plus the object-orientated design concepts of classes to describe the
internal structure and behaviour of each pattern.
 In 1964, Alexander first described how abstract ‘things’ interact, and how
misfits between these ‘things’ and their environment can be minimized.
Alexander's work spawned considerable interest from other areas, notably object-
orientated software design. He introduced the idea of ‘patterns’ which can be used
at a local (decentralized) level to create structures, which in our case contain the
internal processes (not necessarily the formal business processes) of organization
units each of which has the most appropriate fit for its purpose.
 With the discovery of highly optimized tolerance (HOT) in 1998 onwards
(see The Robust Organization), it became clear that the placing of barriers
between business areas, or more precisely designing where to buffer one business
process from another, could be undertaken in a much more precise way.
Alexander’s aim was to minimize the knock-on effect of a change. HOT showed
how to use information on the likelihood (i.e. probability) of a possible change in
order to place buffers around those areas where this was most likely to happen.

Introduction 2

The best analogy is the placement of firebreaks in a forest, where areas near
campsites for example are closely ringed with firebreaks because of the greater
probability of sparks occurring.
 IT system designers have a similar challenge: to design systems such that
subsequent changes do not introduce unwanted side-effects. One way to do this is
to attempt to identify those parts of systems which are most likely to change.
These are usually the programming nuts and bolts used in its construction rather
than the higher level design (the architecture) which is typically more stable. Such
areas vulnerable to change are buffered – hidden within black boxes
(‘encapsulated’) – as far as possible.
 The aim of this book is to pull together apparently unrelated concepts
from architecture and object-orientated IT systems design such as:

 decentralization and decomposition
 buffering
 encapsulation
 barriers

in order to show where business processes (and their attendant staff) should be
buffered (cushioned) from one another. The way in which business processes are
linked – and in particular any buffering between them – will be defined by design
patterns and elaborated as linked classes, linked objects or a mixture.

The Pattern Organization 3

CHAPTER 2

PATTERNS

T
From tem

here are many types of template loosely called patterns. The familiar
knitting pattern is a list of detailed instructions on how, for example, I can
knit myself a sweater. It is more than just a generic set of instructions

covering all sweaters: the pattern will be for males of a given chest size and will
specify a particular wool thickness. I can probably choose the wool colour, but
even this might be prescribed if the sweater is to be multicoloured. This knitting
pattern is not generic in any way: it does not describe how to construct sweaters
in general, merely ones for men of a particular shape. This construction pattern is
not the type of pattern we are looking for.

plates to patterns

 The person who creates the patterns will, on the other hand, have some
more general design pattern for sweaters of a particular type: ‘heavy winter
sweater with frontal cable-work and crew neck’, for example. This design pattern
is then used as a template to create construction patterns for knitting male and
female sweaters of a set range of sizes. This design pattern is getting closer to the
type of pattern we seek: it can be applied to generate many solutions – many
knitting patterns – which have some readily identifiable things in common (shape;
motifs and so on) and are appropriate for a particular context (cold weather). And
the phrase ‘heavy winter sweater with crew neck’ may well be used as a
convenient shorthand description between experts who create knitting patterns.
Furthermore, our designer might have an even more generic pattern – a ‘crew-
neck sweater’ pattern for example – to call upon which was used as a base to
develop the design pattern for heavy winter crew-neck sweaters. The latter design
pattern will inherit many of the characteristics of the ‘crew-neck sweater’ pattern
but with variations to make it suitable for winter use. The ‘crew-neck sweater’
pattern may conceivably have an even more generic predecessor – ‘sweater’
pattern from which it inherits some basic shape. This is getting closer.
 Engineering and construction inevitably have many concepts which we
might recognise easily as some form of pattern. The simple arch bridge, the
suspension bridge and the box girder bridge all have the same aim: to cross a gap.
But the engineering principles upon which each works are different. Each
represents a form of design pattern from which a construction pattern – the
detailed design and construction details for a particular bridge – can be derived.
But, unlike the various forms of sweater, they do not inherit a common ancestry
even though they fulfil the same purpose. If we wanted to cross a gap with some
form of bridge, we would, perhaps, first examine alternative bridge types. A
catalogue of alternative bridge patterns – suspension bridge, cantilever bridge and
so on – would be useful, particularly if each type were well proven and the
circumstances (the context) under which it was most appropriate (long single
span; high winds;...) were documented. Let us elaborate this pattern for a
suspension bridge in a slightly more formal way as follows:

Patterns 4

Name: “Suspension bridge”

Problem: Need for a road or rail crossing over a gap in the terrain

Context: Appropriate for gaps of between 500 and 2500 metres when there are
substantial rock abutments at each end in which to anchor the cables

Success criteria: Elegance of design is important. Cost matters but is not an
overriding factor.

Solution: A flat or slightly arched deck (set of carriageways) suspended
longitudinally at regular intervals by cables made of twisted steel wire which are
attached vertically to other similar but much stronger cables which fall in an
inverted arch (catenary) either side of the deck. These chains pass over tall towers
near each end of the bridge and are then firmly anchored in the rock abutments or
in massive concrete blocks. Because suspension bridges are light and flexible,
they are vulnerable to strong winds. The towers may need additional pendulum-
like devices to stop them swaying, and the deck may need stabilizing fins

Rationale: Stranded steel wires are, for their weight, very strong in tension (i.e.
when pulled).

This simplistic example is sufficient for me as an engineer to decide,
provisionally at least, whether a suspension bridge – as opposed to other types of
bridge – is likely to solve my problem. The keywords used: problem, context,
success criteria and so on help to give some structure to the pattern definition so
that we can compare this pattern with ones for other types of bridge. They
summarise in a consistent way:

 the problem – for which we need a solution

 the context or environment with which any acceptable solution needs to
contend – type of anchoring available at each end and so on. The context is
black-and-white in the sense that the solution has to work within it (a bridge
which spans most of a gap is not a solution)

 the success criteria (Alexander’s forces) which must be satisfied if the

solution is to be regarded as successful (or, following Alexander, what
‘forces need resolving’). Success criteria are often shades of grey in the
sense that the greater the degree to which they are met, the better is the
solution. Success criteria may conflict; when ‘low cost’ is a criterion, it will,
for example, conflict with others which imply high-quality materials or
individually designed components

 the solution (Alexander’s configuration)

 any rationale (optional: what makes this solution particularly appropriate)

It is worth quoting Alexander’s definition of a pattern in its architectural context:

The Pattern Organization 5

“…[a] rule which establishes a relationship between a context, a system of forces
which arises in that context, and a configuration which allows these forces to
resolve themselves in that context”

Outside architecture, and occasionally within architecture, it can sometimes be
unclear where ‘context’ stops and ‘forces’ start. For example, in the suspension
bridge example above, the context is a geographical one of gap size and rock
abutments. But if the bridge is to be regarded as a success, it will also look
elegant and not be too expensive.

The pattern format gives us a language to describe almost any generic design.

‘Suspension bridge’ is, to bridge builders, a very basic and high-level concept. An
engineer would hardly need to refer to a book of bridge-type patterns of this
simple type. But at a lower level, where designs become more detailed, the
number of such concepts becomes very large.
 Such a definition looks like formalization for formalization’s sake – like
over-complexing something which is actually simple. This is not true although
the significance and power of patterns will not become apparent until we examine
some more difficult design problems.
 Outside engineering, there are two areas where the introduction of patterns
has had a profound effect:

 the architecture of buildings and their surroundings
 IT system and program design

Chris Alexander laid the foundations for both. Engineers and IT people cottoned
on to the elegance and ubiquity of his ideas quicker than the majority of
architects. Or perhaps architects, particularly those who promoted the brutally
sharp rectilinear shapes in grey concrete popular in the ’60s and ’70s, saw only
too well that Alexander’s analysis had sounded a death knell for their pet
schemes. To see the true significance of what looks superficially like a trite
concept, we will home in on the concept of patterns from three somewhat
different directions:

 Alexander’s first widely-published foray into this area (his Notes)
 Alexander’s Pattern Language
 The Gang of Four’s object-orientated system design

The simplistic example of a suspension bridge pattern may give the impression
that a pattern is merely a description of an ‘object which solves a problem’ – like
a pill taken for a headache. Apart from being a proven solution to a problem, a
pattern describes both objects and relationships between objects – in other words
structures. This will become clearer when the buffer patterns are described, and is
illustrated graphically in the Bridge pattern class diagram on page 41.

Patterns 6

The Pattern Organization 7

CHAPTER 3

DECOMPOSITION PATTERNS

C
“Note

hris Alexander published a summary of his PhD thesis in book form with
this arcane title in 1964. He later published two series of books on
architecture which have been widely read and very influential. The first

was on the definition and use of patterns to design rooms, buildings and spaces
which were ‘alive’ – places which inhabitants enjoyed rather than tolerated. The
second series, of which one book remains (as at October 2004) to be published,
proposed the far more fundamental concept that architectural forms which were
‘alive’ could be created by repeating simple growth operations – ‘structure-
preserving transformations’ – on fifteen basic geometrical properties.

s on the synthesis of form”

 Perhaps because of its title or analytical content, his Notes took some time
to be appreciated for what it represented: an entirely new approach to designing
buildings and collections of buildings. Why was it, for example, that buildings
designed in the conventional way by groups of engineers specialist in particular
disciplines were either dysfunctional – they failed to do what they were designed
to do – or did not fit their external environment, or both.
 Alexander started by trying to define ‘design’. He suggested that every
design problem was an attempt to make whatever we wish to design – the form –
a good fit into its surrounding environment – the context. This context includes
any mandatory requirements from the architect’s design brief such as ‘south-west
facing’ or ‘single storey’. The form thus represents a solution to the design
problem and the context is the problem itself. Design therefore is a process of
analysing an ensemble - the combination of form and context – and trying to
identify how well or badly the form was aligned with each part of its context.
 He gives a simple example (which is one of construction rather than
design): the machining of a flat piece of metal so that it is smooth and level. After
some preliminary grinding, the piece is placed on a guaranteed-flat reference
sheet of metal which has been covered in ink. Any high points on the piece being
machined will appear as traces of ink. These traces are ground down and the
process repeated until there are no high points indicated. The ensemble is the
piece being machined (the form) plus the inked reference sheet (the context). The
ink traces graphically represent the misfits (in this case high points) between form
and context and, in this example, there is only one division between form and
context: the two metal surfaces being compared.
 Take now a slightly more complex example. If we wish to design
‘something to heat small quantities of water quickly’, the context is everything a
kettle or pan designer needs to worry about: it must be safe to hold when hot,
electrically safe (if powered by electricity), spill- and leak-proof, must raise water
to boiling point acceptably quickly and so on. If the resulting form, a kettle for
example, meets each of these criteria well, it is a good solution to the problem.
This example is more complex than the first in two significant ways:

 there are several different types of potential misfit (degree of electrical
safety; speed of boiling; …)

Decomposition patterns 8

 there may also be more than one division between form and context. For

example, if the challenge is to design something which heats small
quantities of water, we may focus attention on the source of heat or power –
the stove or electricity supply. In this case, a kettle becomes part of the
context and the stove or electricity supply is the form.

This second point is subtle but very significant for our purpose.

Many ways to split form and context within one ensemble
Assume that the outer limit of our ‘design space’ – the area within which our
attention is focused and outside which we can ignore everything – is a house.
Within the house, there are many ways to split the form and context. For example,
when ignited, gas (the solution, i.e. the form) supplied to the kitchen (part of the
context) is an efficient, relatively safe and cheap way to provide heat to water
(another part of the context). The context is everything surrounding the gas flame:
a pan or kettle, the water within it, the stove, the air supply to the kitchen (needed
to keep the flame alight) and so on. The context also implicitly defines the criteria
we will use to see how well the gas flame heats water. Part of the context is
‘safety’, so how safe is a gas flame and gas itself? Another part of the context is
‘efficiency’, so how efficiently does a gas flame transfer heat to whatever it is
heating?
 Since there are many ways to split form and context, this suggests two
obvious questions:

 are contexts hierarchical like Russian dolls? Since kitchens are part of
houses, gas flames (for cooking) part of kitchen stoves, pans are used on
stoves, and water to be heated is contained in pans, do we have a hierarchy
of forms and contexts in which one context (a house) contains many forms
(rooms which need designing to fit the house in some best way). Another
‘smaller’ context – a kitchen – contains the usual kitchen facilities, one of
which is a stove, which must be designed to serve the kitchen optimally in
some sense. And so on, down to the smallest individual utensil.

 whether there is one best way to split any ensemble into form and context?

and one less obvious one: are these two questions contradictory?

It is worth emphasizing one point which was not mentioned explicitly in
Alexander’s Notes but is a fundamental feature of his design patterns: the criteria
which, if met, make a solution (a form) a good solution should be separate from
the context. The latter is pre-ordained and cannot be modified. The misfits
(above) are the forces which need to be resolved in order that the solution is a
good solution; we have called resolution of these misfits success criteria, i.e. a
success criterion is the fixing of a particular misfit. As Alexander points out
repeatedly, misfits are more obvious – they stand out far more – than successes.
Context is black and white and non-negotiable. The success criteria are shades of
grey and may mutually conflict, in which case not all of them can be satisfied
adequately.

The Pattern Organization 9

Size versus complexity
A relatively simple task, like machining a piece of metal so that it is smooth
enough when measured against a truly flat reference sheet of metal, may take a
long time if the piece being smoothed is large, but we have only one criterion of
fitness: is the piece smooth?
 A craftsman who operates a grinding machine and smoothes metal bars for
a living has a simple job in the sense that there are no compromises to be made
between different fitness criteria. His job is a skilled one, certainly. But grinding
large numbers of metal pieces – or grinding a few large pieces – is a
straightforward job. Smoothing does not have adverse repercussions on some
other possible fitness criterion such as durability (the heat generated during
grinding might, perhaps, lower the resistance of the surface to wear and tear)
because we have only included one such criterion – smoothness. The number or
size of pieces machined makes no difference. So the size of a design problem
does not in itself create complexity.
 The problem of designing ‘something to heat small quantities of water
quickly’ is different. Here we have several fitness criteria to manage at the same
time. If each criterion were totally independent of all the others, the designer’s
task is still simple; it may take considerable time to find a design which satisfies
all fitness criteria – is it safe to hold when hot, leak proof, and so on, but if these
criteria do not affect one another, the design process is easy to manage. The
designer merely designs for each fitness criterion separately and then tests for
how well that criterion is met. But the designer’s job suddenly becomes complex
when the criteria are not independent of one another.
 One criterion which is almost invariably not independent of others is
cost. A kettle or pan which must conduct heat quickly from the gas burner or
hotplate of a stove to the water inside needs a base which is a good conductor of
heat, which is one reason why pans for serious cooks have copper bases. But
copper is more expensive than steel or cast iron, for example. So when designing
a pan, the designer cannot design for each fitness criterion independently. A pan
with a Grade-A copper base is expensive, and if maintaining an even temperature
were important, a thick copper base would be used. But the thicker the base, the
heavier it is and the more heat it will retain after use; it becomes more difficult to
wield and a burn caused by accidental contact becomes more likely. The designer
lives in a world of compromise.
 Readers of The Coevolving Organization may now be recognizing a
common thread. ‘The different faces of K’ in Chapter 5 of The Coevolving
Organization described what it might be like to attempt to reach a peak of high
fitness by adjusting gene values (cf our different design criteria). Where genes are
independent, the landscape to be climbed was a simple one which gradually
sloped upwards to a high peak – like Mount Fuji. Any improvement in fitness
caused by adjusting one gene value was always good: it never had the side-effect
of adversely affecting the fitness caused by the settings of other genes. When
genes were linked to one another – were not independent – climbing became a far
more difficult task. The landscape over which we were climbing was no longer a
simple smooth path to a high summit. It was instead a rugged landscape with lots
of small hills with steep sides. It became all too easy to become marooned on the
peak of one of the smaller hills which represent relatively low fitness, in our case
a fairly expensive pan with moderate heat conduction and only averagely safe.

Decomposition patterns 10

 The number and strengths of links between design criteria is what in The
Coevolving Organization we called K-complexity. Where design criteria – the
forces – are mostly independent (‘attractive colour’ and ‘efficient heat
conduction’ are probably independent, for example) the landscape is ‘low K’.
When the design criteria have lots of interdependencies (copper bases conduct
heat quickly but bump the cost up, for example), the landscape is ‘high K’.

Complexity and decomposition
When these cross-connections occur, with the resulting compromises and
complexity, design becomes far more difficult. In his ‘Notes’, Alexander
proposed that this was why so many buildings in the developed world are
dysfunctional. He contrasted the way in which houses were traditionally
constructed in undeveloped countries with the way they are constructed in
developed countries.
 The simple hut in the undeveloped country was usually built – hardly
designed – by one or two individuals. These builders were not taught house-
building in any formal way; instead they absorbed ideas by watching others. And
when their hut was under construction, passers-by would suggest better ways to
do things. In other words, there was no guidebook, no specific general rules to be
learned, and no formal tuition. But the resulting huts were simple and rarely
changed in basic structure from one generation to another. They fitted into the
local environment well.
 The house or office block in the developed world is designed and built very
differently. They are multifaceted (see page 47) and, as we shall see, almost
always complex, even the highly-standardized houses built on large housing
estates by a single developer. Architects and engineers are trained. This training
is essentially the absorbing of a large number of general concepts of ‘good
design’ plus a bit of theory. Inevitably, some of these concepts clash with others –
and most of them usually clash with ‘lowest cost’! When an architect is
commissioned to design a house, he or she applies these general principles to the
design brief, the local topography, any prescribed orientation of the house, local
services (whether a foul drainage main is available to remove sewage, for
example) and so on. What the architect, unlike the builder of the simple hut, is
unable to do is to copy a design which has been proved successful by centuries of
use in the same locality. He or she will, if necessary, modify the site where
possible to suit the brief: wet clay soil? just cut down nearby trees (which absorb
water in dry summers but not winters) and build deeper foundations to avoid
subsidence or heave; windy exposed site? create an artificial earth bank and
provide additional heating on north-facing rooms; and so on. These would,
individually, not necessarily lead to dysfunctional houses. To see where
dysfunction arises, we need to look more deeply at how changes occur in the
structure of the simple hut and of the modern house.
 Changes to the structure of the simple hut occur gradually, and when they
occur they are rarely radical changes. There are two counteracting forces at work:
the builder usually lives in the hut he built. If there is something wrong – perhaps
there is not enough ventilation in an unusually hot summer, he may well poke
another hole in the wall or expand an existing window hole. But almost certainly
he will not radically redesign the hut to improve ventilation; local tradition
dictates certain hut shapes which must be adhered to. He may, in fact, be
completely unable to design a hut from scratch if he were uprooted into a very

The Pattern Organization 11

different environment. His hut may not last long, a few seasons perhaps or much
less if his is a peripatetic lifestyle following herds or flocks to new pasture. So he
has regular experience of building new huts and making minor changes to
existing ones. He may even never have reason to want to change the design of his
hut: years of fine-tuning of the design by himself and his colleagues and
predecessors have removed any real need for redesign if the local topography and
weather remain roughly the same.

These two features:

 immediate response to fix problems
 the weight of tradition which prevents radical changes

together make the house structure adapt easily to changes in requirement (such as
additional ventilation needed to cope with the unusually hot summer) without
creating other problems: an additional ventilation hole is unlikely to cause side-
effects such as structural instability. Each problem – a ‘misfit’ in Alexander’s
terms – can be fixed independently. In this simple hut, each misfit is independent
of others and can be fixed independently of others. This can be inferred from the
fact that the construction details are relatively unchanging. It implies that if, back
in the mists of time, the various details of construction were linked such that
minor changes to one (wall strength, for example) had a knock-on effect on others
(coolness in summer, for example), these interdependencies had been gradually
severed over the passage of generations. If not, each house would be different and
there would not be any uniformity in construction. In other words, the standard
construction and its unchanging nature are evidence that the construction has
reached equilibrium: there is no longer any need to make significant changes.
This unchanging nature is evidence that various details of construction are
independent of one another. If not, minor changes would for ever be upsetting
other parts of the construction (our ventilation hole could weaken the wall;
weakening the wall then might have the knock-on effect of making the structure
sway in the wind; the swaying in the wind then might have a further knock-on
effect of making the structure skew around the centre which further weakens the
wall; and so on). Any structure – or indeed any system – in which different parts
can not receive minor modifications without upsetting others, is for our purposes
complex.
 The architect designing a modern house has a fundamentally different
problem. His or her requirements brief, in the context of the site on which the
house is to be built, is full of potential conflicts. Any errors in design may be
found out too late and by the eventual occupiers and not by the architect. The
error may have been repeated many times on a large housing estate. Architectural
briefs insist on change for fashion’s sake – what will sell rather than what best fits
the locale. These conflicts make the construction complex in the sense defined
above, where fixing one part of the design brief such as ‘make the house cool in
summer’ (perhaps by providing air conditioning because the site is an exposed
one) conflicts with the requirement for the house to have ‘low running costs’ and
the need for ‘quiet’ (air conditioning in small houses can be noisy). Each attempt
to resolve a misfit, perhaps by installing larger air conditioning ducts in an
attempt to reduce the background hiss needs thicker ceilings to house the ducts,
which entails lowering the ceiling height of the rooms, which ….and so on.

Decomposition patterns 12

 The large number of individual issues which the architect needs to resolve
plus the fact that these are not independent of one another means that the architect
needs to either:

 consider all factors at the same time, which for even a small building may
be impossible

 or

 divide the factors into groups (heating/cooling/ventilation; acoustics; room

shape and height; …) and consider each individually. He or she might then
subcontract the solution of each group of issues to an expert in that field. A
heating/cooling and ventilation expert, for example, should be able to
specify the most cost-effective solution to meet the architect’s brief for
those factors.

There is, however, one fundamental flaw in grouping factors into expert areas,
and this is at the heart of Alexander’s argument:

there is no reason to suppose that the way in which a designer groups parts of the
design into such ‘expert areas’ has any relationship to any independent groups
which naturally exist in the building to be designed.

The building may conceivably have no groups of factors which are independent –
in which case it will be extremely difficult to design successfully. But if it has
such groups – for example the lighting, depth of the foundations, roofing material
and so on are largely independent of the heating and cooling system chosen, then
any such groupings which are independent of other groupings (‘roofing’ may be
grouped along with ‘outer wall construction’ and similar items into a group called
‘building fabric’) can safely be designed as a group in the knowledge that there
are no knock-on effects of any design decision upon any other group. And as
Alexander pointed out, the groups we define for convenience into expert areas
such as ‘acoustics’ may and probably will be out of kilter with the naturally
occurring independent groups. Experts will thus make decisions about things
which are best for their area but which upset decisions being made by the experts
in other areas. Unless we design within naturally independent groups, we store up
trouble for the eventual construction.

So how do these strictures apply to business? If the design of a business’s
organization structure does not reflect any naturally independent groupings within
its business processes, any change to one part of the organization as a result of a
change in a business process can have unpredictable repercussions throughout the
organization. Since organization groups are rarely completely independent – they
are merely more autonomous than if the organization were cut in other ways – we
can tackle this problem with two complementary approaches:

 ensuring that the organization is structured around any naturally ‘more-or-
less independent’ groupings of business processes

The Pattern Organization 13

 then deliberately engineering buffering between the organization groups we
have chosen such that changes within a group are as far as possible invisible
to other groups. This would, of course, be unnecessary if such groups were
completely independent. But this is a rarity, so we need to minimize the
effect of such changes with some artificial organization constructs which
make a group look the same to its peers even when it changes radically
internally. Real organizations contain lots of groups which are independent
of each other: for example, sales teams selling different brands in different
countries are largely independent of each other, but each sales team will
have continual contact with the relevant customer services team which
processes orders resulting from their efforts.

A Pattern Language
Alexander’s Notes may have been written for architects but was much better
understood by those with a scientific and mathematical background. His later
books are different: they are targeted squarely at practising architects, town
planners and those who want to design and build their own houses. This does not
mean that the content is any the less significant but it is accessible to a more
general readership; its precise style is offset by an enthusiasm for buildings which
are ‘alive’ – a concept which is difficult to pin down since it is rooted in people’s
perception and is extraordinarily difficult to define analytically (this search for an
analytical definition and the profound consequences which emerge are the
subjects of his second series of books).
 Although Alexander’s ideas predate much of the technical work of the past
two decades on coevolution, his central tenet is that buildings, landscapes and
towns should not be designed centrally in the conventional way – ‘on the drawing
board’. Instead, they need to evolve in a way which is driven by those who live
there. Failure to do this results in buildings and townscapes which keep its
inhabitants in a state of tension. This tension arises from the simple fact that
people have evolved over many thousands of years to live in accommodation of a
human scale which is not built to a precise plan: smaller parts of it blend
seamlessly with others and into the wider landscape. Its antithesis – the concrete
tower block – is tall, regimented and probably out of kilter with its surroundings.
 Before we can identify the origin of this tension, we need to look more
closely at how people live. When people use a house, office, garden, park, fields
or even a roadway, their usage is a series of events. When I have a dinner party,
my dining room is the focus of certain events which are repeated, broadly but not
identically, each time I eat there. Those who are dining enter the room, sit down,
chat, are served a first course, eat, chat again, then someone clears the plates
away and brings on the next course, and so on to the end when the diners troop
out to the drawing room. No dinner party is identical with any other but the series
of events is similar. If we ignore the quality of the food and conviviality of the
company, the success or otherwise of the dinner is determined partly by the room
itself. Is it lit well enough such that diners can see what they are eating, but not lit
with harsh lights or with people seated facing the window and directly into the
evening sun? Is the size and shape of the room consistent with the size of the
party? Is the décor consistent with the furniture: does my prized two hundred year
old Georgian table-and-chair set match the wallpaper, cornicing and room height?

Decomposition patterns 14

Each mismatch – each lack of fitness for purpose – creates unease, however
small, among my diners.
 Alexander’s point was that every place to which people go regularly is
associated with a repeating series of events. This series of events in my dining
room is inextricably linked with the way in which the room was designed. A well
designed room with the right height, the right ratio of length to width and with
natural lighting from at least two adjacent sides creates a series of events which
makes for relaxing and enjoyable use. A badly designed room – one which
perhaps has low ceilings (engendering feelings of claustrophobia), which is lit
with a single large picture window on one side facing the setting sun, which is
some distance from the kitchen (allowing food in transit to get cold) or too near
the kitchen (allowing cooking smells to permeate) can mar a dinner party even if
the food and wine are excellent. To take another even simpler example, most
people are afraid of heights. Were I fortunate enough to own a luxury apartment
in a high-rise block overlooking New York’s Central Park, I would still be uneasy
about floor-to-ceiling windows which were not recessed (i.e. were in line with the
wallpaper) and, on the outside, had no ledge. Having walling or panelling for
about a metre at the bottom such that the window stops short of the floor makes a
difference. If in addition the window is in a recess, a small bay with window seats
for example, my unease melts away. My logic tells me that heavy laminated plate
glass will prevent my falling out of the floor-to-ceiling window. But my innate
fear of heights makes me shun the area near such a window. We could thus
specify designs for dining rooms or windows or any building component which
make us feel at ease (and, alternatively, what designs to avoid and which create
unease). If a house or apartment block were built using a collection of such
successful designs and these designs were complementary and not clashing, they
will reinforce each other. This principle does not only apply to buildings. The
successful design of gardens and courtyards follows the same principle. One of
Alexander’s best examples is that of a porch. For most architects, it is somewhere
to shelter when opening the front door from the outside or when locking the door
on leaving. If it is an enclosed porch, it is somewhere to shed gardening boots and
to keep umbrellas. But to Alexander it is part of an ‘entrance transition’ which
prepares the visitor smoothly for a different environment. When approaching the
house, the level should change, the light should change (perhaps with a sweeping
path between trees), the texture underfoot should change (perhaps asphalt
switches to gravel) and so on. The successful design for ‘path’ should link
seamlessly with that for ‘porch’ and prepare incomers for the larger transition
from outside to inside the house (or vice versa).
 Alexander described a collection of such designs. The principle was not to
design from bottom up using the smallest designs (window; doorway; ceiling
height; …) but to decompose whatever it was we wanted to build into many
smaller designs. This was to ensure that the designs fitted together. Were we to
cobble together a house using designs for window, doorway and so on, we would
probably find that the resulting house lacked cohesion and was a misfit to its
building plot. ‘Top down’ design avoids this. We first decide on the scope of
what we want to build. This is mainly geographical: do we want to include a
design for the approach road or do we have to accept what is already there? Do
we want to design the house and garden together such that there is some unity
between the two and such that going from one to the other is a seamless
transition? Wherever we set the bounds (scope) on what we want to design such

The Pattern Organization 15

as “house and garden but excluding approach roads”, we select the ‘largest’
appropriate designs – perhaps ‘four-bedroomed house’, ‘courtyard’ and ‘grass
lawn’. Sensibly however we will include any salient features of the neighbouring
house which might affect our house-to-be such as neighbouring windows
overlooking our garden. ‘Courtyard’ will in turn be composed of smaller
complementary designs for courtyard features which promote use of the
courtyard: a sunny corner with a bench; a shady corner for when the sun is at its
height in midsummer; more than one entrance and paths to encourage their use;
an entrance transition to prepare someone leaving the house to enter the
courtyard, and others.
 Our entire design will be made up from decomposing the highest level
scope into smaller and smaller designs. These smaller designs are not of fixed
sizes. Like the knitting pattern for a sweater, the designs represent shapes rather
than sizes. A dining kitchen, for example, may have a length-to-width ratio of 6 to
4 approximately, but whether this is six metres by four metres or nine metres by
six metres is irrelevant. There will be some absolute lower and possibly upper
size limits: there is no point, for example, in specifying a dining kitchen too small
to fit a dining table or even a breakfast bar. The designs thus define the geometry
– the shape – of the result but not its size.
 A collection of such designs may fit one culture but not another. A design
for a dining kitchen will not be used by an ethnic group which never eats in the
kitchen. A design for a roughly square dining room which was intended for use
with a round table would be anathema to a very patriarchal group which sat in
order of precedence: paterfamilias at the head of the table, with children in
descending order of age, seen and not heard, at the other end. One can imagine a
pool of all known designs of such forms from which a selection is made
appropriate to each such cultural group. When the designs appropriate to a group
are successfully used again and again by that group to build houses, blocks and
even whole towns, the individual designers do not need to design from scratch:
they know intuitively and from group lore which collection of designs to use. It
becomes to them an indigenous language.

each design is a pattern, and patterns (e.g. ‘dining room’)
are composed of smaller patterns. The collection of all
known patterns is a pattern pool

the collection of all patterns appropriate to a particular
culture is a pattern language

What makes a successful pattern? We can imagine a world full of unsuccessful
building patterns which fulfil some commercial objective but which are
unpleasant to inhabit. The high-rise concrete-framed tower block built to provide
low cost housing for the masses could equally be specified using patterns. It
typically has thin walls separating neighbours (who can thus annoy each other –
unintentionally or otherwise), and an unpleasant dour exterior with sharp edges
and extreme regularity of construction. It is a positive deterrent to neighbours
who – culturally – would otherwise pass the time of day with each other: there is

Decomposition patterns 16

no street for them to walk down to do so, just an unpleasant shaded corridor also
in dour concrete. And so on.
 We evolved from a less developed world, and in the less developed world
regularity of construction was non-existent. Where everyone builds their own
house, each hones the layout to whatever they find most congenial but within the
constraints of their ethnic custom. Why do we feel unaccountably at home in the
towns which have evolved over many centuries and whose streets are narrow and
winding? It is more than a feeling of “gee that’s quaint”. Similarly, why do we
feel strangely at ease in old country hotels which have sprouted over the years in
strange directions and on many different levels? And why do we not experience
these feelings in modern towns and modern hotels even though the facilities may
be incomparably better? Why is old concrete depressing whereas the similar use
of natural stone, which takes on lichens and a patina of age, is welcoming? Brick
is an even more telling material. Hard-faced brick never mellows; brick with a
slightly more friable surface and some irregularity in manufacture becomes less
harsh with age. It may never look ‘natural’ – red is not a colour common in nature
– but eventually blends in. Anyone doubting this should visit London’s Hampton
Court Palace, much of which was built in the Tudor era and has had a few years
to settle down.

Object-orientated system design
A later chapter will look in more detail at complex IT systems which went adrift
during development because project managers and system designers ignored side-
effects – the inevitable accompaniment of complexity where a change in one area
has an unanticipated knock-on impact on another area. Size and complexity are
usually –and wrongly – treated as synonymous. But, as The Coevolving
Organization stressed repeatedly, the essential difference between them is one of
cross-connections. A company’s sales-force in one country will, for example,
very likely have an identical structure of:

 sales director
 regional sales managers
 area sales managers
 sales territory men and women

in a strict hierarchy. It might be a large hierarchy with hundreds of sales men and
women at the bottom of the tree, but is relatively easy to manage. There are no
links – no cross connections – between a salesman in the north of the country and
a salesman in the south. Setting sales targets is similarly easy because poaching
customers (at the store level at least) from a colleague is impossible. A store is
either in one sales patch or another. If a store in my patch has an unusually
successful promotion of one of the brands I sell, it will be at the expense of the
market share of competing brands. The worst which could happen within my
company is that if this store were near the boundary of my sales territory,
customers who usually patronized a store in the neighbouring territory were
seduced into mine instead.
 Large thus does not necessarily mean complex. But does complex mean
large? Not necessarily. It can be diabolically awkward to run a relatively small
but largely matrix-managed business – exemplified by the visible cross

The Pattern Organization 17

connections on the organization chart. If I am sales manager for my country and
for the manufacture and marketing of low-cost Brand A globally, I and my
colleague who is responsible for the sales in his country and for the manufacture
and marketing of more-upmarket Brand B globally can have an enjoyable time
frustrating one another. My colleague wants to promote his Brand B in my
country which will steal some share from my Brand A by up-trading Brand A’s
usual customers. This will clear his embarrassing overproduction of Brand B but
make no profit in my country which is what I am measured on, since import
tariffs on Brand B are high whereas my Brand A is made locally. In return,
however, I could arrange a quid pro quo for my colleague…
 IT systems are prone to the same underlying problem. They can be very
large and are certainly technically ‘complex’, but are not necessarily complex in
the sense with which we are concerned. What matters is whether the thousands of
objects – pieces of program code which ‘do something’:

 are insulated from each other as far as possible
 can make no assumptions about how the others work

 and
 communicate when necessary in a regimented way which allows the

caller to ask for something to be done, to print a line of text for
example, but is strictly barred from finding out how the action is
actually performed.

By no coincidence, our coevolving business objects closely resemble these IT
objects, where each of the latter is a self-contained section of program (a process)
with its own associated data. Such objects communicate with each other by
passing messages using formal message formats and protocols as described in
Chapter 7 of The Coevolving Organization, but how they perform their functions
is deliberately hidden from others. This ‘information hiding’ for computing
objects was introduced as a way to protect an object from being tampered with by
other objects or from suppositions being made on how it worked internally. These
objects exist independently of others, hide internal information on how they do
what they do from others, respond only to formal messages, have standard
‘classes’ of object (sales products; field sales territories;...) with ‘instances’ of
each object (a particular brand being sold; a particular sales territory) and so on.
The programming languages which provide these features of classes, objects and
so on are unsurprisingly called object-orientated programming languages and are
generally thought of as a recent invention. This is wrong: they had their origin in
the 1960s simulation languages whose aim was to model the real world.
 This book is not aimed primarily at IT experts and a summary of object-
orientated programming in isolation would be a sterile experience for non-
specialists. Fortunately, however, we can approach it from a slightly different
angle via its origins in simulation:

 from

 simulation of the real world
 to

 simulation languages
 to

 to object-orientated languages.

Decomposition patterns 18

 The present writer’s first ‘real’ job was with the UK’s former national rail
authority writing computer programs which simulated and scheduled the
movements of passenger trains in the most complex railway networks in England:
‘complex’ in the sense that one train movement could have repercussions on
many others. The aim was to find out how to regulate the flow of trains better.
The targets were to improve how well they kept to the timetable and to identify
opportunities for better use of the existing track capacity: a better service, more
trains or ideally both. So, if only for selfish nostalgia, the following examples are
taken from railway simulation. This will lead naturally to the concepts underlying
object-orientated programming without dwelling too much on the purely IT
aspects.
 Firstly, we need to draw some boundaries. We could in principle try to
simulate the entire railway network but this would be a mammoth job and not
very productive. Instead, following Alexander’s decomposition principles (see
page 1), we split the national railway network into sections which are as
autonomous as possible. This usually means dividing the network midway down
long sections of simple track as opposed to trying to split up the network in the
middle of a station, marshalling yard or junction. We also need another type of
division. Train movements occur round the clock, but are much less numerous in
the early morning than in the 08:00 or 17:30 peaks. A late-running evening train
could possibly cause a train the morning after to start out late, but this is unlikely:
there is usually ample slack in the overnight timetable and such knock-on effects
are only normally apparent to passengers if there has been major disruption
caused by snow or labour strikes when the engines and carriages end up in the
wrong places overnight. So, following Alexander, we have selected for simulation
a slice of the railway network and timetable whose performance will be as little
affected as possible by the behaviour of trains in adjacent networks or by their
behaviour the previous day.
 The railway network under consideration then needs to be broken down
into all its components: track, junctions, signals and so on, and the relationship
between each defined. The lengths of track between junctions need specifying
and the relationship between the track on either side of each junction needs to be
codified. Large junctions look like spaghetti to the uninitiated but are made up of
many combinations of a small number of simple junction types.

 Figure 1 - scope of simulation

The Pattern Organization 19

Some of this, such as the track, is unchanging, at least in the short-term. Some –
junctions for example – change when a train movement is set up by the train
regulator (signalman). Some – the signals themselves – change when the
regulator sets up a route and later when a train passes in order to protect any
following or otherwise conflicting trains. In summary, we have many different
classes of ‘thing’ (such as signals – and trains themselves) to simulate.
 To make the simulation programs reusable for other railway areas and
timetables, it is essential that all the details of our timetable and slice of the
railway network are presented to the simulation program purely as data. So what
does the program itself contain? Firstly the basic mathematics of how trains start,
move and slow down, together with the logic controlling the signals which
prevent one train running into another. But the performance characteristics of
different types of engine and carriage will be presented as data in order to cater
for the numerous varieties of each which are present on a real railway. Secondly,
the program will need to undertake the actual simulation of train movements: to
move a train from A to B in a realistic and safe way.
 To manage each type of item to be simulated, we could categorise them as
in the following example:

locomotive
 electric locomotive
 type A
 type B
 type C
 diesel locomotive
 type D
 type E
 type F

For simplicity we will assume that each locomotive type is permanently coupled
to a fixed number of carriages and we will treat the combination as a single unit
in what follows. The details for each type of locomotive would contain everything
needed to simulate its movements: motive power, braking characteristics, weight
(including carriages) and so on.
 We thus have an abstract (high-level or generic) class of motive power:
‘locomotive’. The details associated with this will be scant, and will be mainly the
mathematics needed to calculate the movements of any locomotive, given some
information about the track to traverse (up hill and down hill gradient, stopping
places and so on).
 At the next level down, we have two basic classes of motive power –
electric and diesel – which work sufficiently differently for them to be treated as
two species rather than as differently performing units of one basic design. The
definition for each inherits from the parent ‘locomotive’ the mathematics needed
to calculate its performance, but this is fleshed out by additional details peculiar
to each class of motive power.
 Finally, we have the individual locomotive types themselves. The
definition for each inherits the mathematics from its grandparent ‘locomotive’
and the fundamental details of its motive power type (electric or diesel) from its
parent. ‘Locomotive’ is less well defined than ‘electric locomotive’ which is in
turn less well defined than the ‘type A electric locomotive’, one or more of which

Decomposition patterns 20

will have their behaviour simulated. The ‘Type A electric locomotive’ is said to
have a concrete class because it is something which can run on a real railway and
can be simulated. ‘Electric locomotive’ and ‘Locomotive’ on the other hand are
one and two steps respectively removed from the real thing and are abstract
classes.
 At present, however, ‘Type A electric locomotive’ is merely a detailed
definition of a particular locomotive. To simulate the movement of one, we need
first to create it. We may have lots of Type A electric locomotives in our
simulation, with various positions and with different speeds, and we need to
create one or more ‘instances’ of each. When we create an instance of a
(concrete) class, we are creating an object using the detailed definition (in our
case the locomotive design manual and blueprints, plus position and speed on the
track). An object is thus an implementation of a definition. The definition is static
but the object will ‘do something’ – in this case move around our virtual railway.
 From our point of view, what is equally important – perhaps more
important – is how objects communicate with each other. We stated in passing
that objects treat each other as black boxes and are unable to find out what
happens within other objects. They can only make requests of one another with
messages. These messages are very stylised: more akin to the format of a formal
invitation to an English wedding (“Mr & Mrs X request the pleasure of Mr & Mrs
Y at the wedding of their daughter Z ….”) as opposed to an informal note. And
the only way an object can request services or data from another object is via a
message. The structure of the message is determined by what the receiving object
expects to receive. When a squad of soldiers is being drilled on the parade
ground, the drill-instructor will shout a formal command – perhaps “By the left,
quick march”. The soldiers will obey this command if and only if it is in their
repertoire of commands and in exactly the right format. If not they will ignore it.
Similarly, an object will only carry out a request from another object if the
request is in a format to which it responds. It defines – and notionally publishes or
advertises – every request it will accept and the manner in which that request may
be framed. A drill squad receiving a command “Left foot forward, stride out”
will, if they are well-trained, be silently ignored. An object receiving a request
which is not in a format it accepts will also ignore the request, or possibly send a
courtesy message back saying it is unable to carry out the request. An object can
accept many different requests (cf. “Stand at ease”; “Halt”; “Present arms”; …)
and the collection of all valid requests is called its interface. Furthermore,
different objects can accept requests presented in the same format. A British and
an Australian army squad may both be legitimately commanded to “Present arms”
but are entitled to perform the drill task somewhat differently. (Those who have
read The Coevolving Organization will have, by now, realised that these
messages are the formats and protocols which underlie C-couplings; one object
C-coupled to another object effects changes in the behaviour of the other via a
message).
 We are now ready to run. Assume that we have the entire infrastructure –
signals, track and so on – in place within the simulation program. To simulate the
movement of a particular Type A electric locomotive (the ‘08:40 from Great
Snoring to Houghton St Giles’) we first of all must create an instance of one.

The Pattern Organization 21

Each instance is a combination of:

data (position, speed, weight…)
operation (also called method – the mathematical process needed to
simulate the movement of the train)

The operation used to move the train is invisible to the rest of the simulation
program. Once an instance of a train is created, it will move under its own steam,
respecting signals and traversing gradients correctly. In practice, the classes
Locomotive, Electric Locomotive and Type A Electric Locomotive may only
contain such things as acceleration and braking characteristics. Further objects
such as Signal and Track will contain other settings needed in order to simulate
the movement of the train. Simulating the movement of this train might then look
something like:

a. Create-instance-of Type A electric locomotive at position X with speed
Y (we now have a particular Type A electric locomotive object which can
do something, as opposed to just its design or class)
b. Simulate [this] Type A electric locomotive [using] Signal, Track,…etc

But this is simulation and not mainstream IT. What about those more ‘normal’
systems which run business processes such as customer services? These ‘more
normal’ systems are actually simulations of the business processes. The processes
are (notionally) defined as classes in a business process handbook and the IT
systems which run them are (roughly) collections of business process classes. The
systems themselves, when being run, are nothing more than instances
(implementations) of the business process classes although they probably look
nothing like it.

The Pattern Organization 23

CHAPTER 4

ORGANIZATION AND BUSINESS PROCESSES

A
Introdu

business with well-thought-through business processes implemented
consistently throughout the organization has an obvious advantage over
its less well-structured competition. But it still has two further challenges:

ction

 how can the business processes be engineered to evolve at the same pace as
the moving target of competition and the changing requirements of
customers? In other words, how can this very structuring be prevented from
putting ‘treacle’ in the way of poise and responsiveness?

 how can exceptions be handled? These are either unusual events defined

within a business process as ‘to be handled manually’ or events for which
there is no process defined (and creating business processes is usually one
of these!)

The advantages of patterns were recognized by many professions, notably IT
program designers who saw immediately the connection between the autonomous
(non-interfering) nature of patterns and the 'objects' of object-orientated
programming. For the same reason, managers of large projects seized on the
similarity of patterns with project tasks: any project is easier to plan and runs
more smoothly when streams of tasks can run in parallel without interfering.

The first challenge was dealt with at length in ‘The re-birth of growth’ in Chapter
6 of The Coevolving Organization.

The second can be exemplified as:

“To whom do I need to talk in order to understand
the issue or get permission for me (or someone
else) to take action”.

In a large or complex organization, this is not easy to answer since, by definition,
there is no business process extant to guide me. And the result is thus all too often
either inaction or a reaction which is far too late. Say, however, that the business
had been structured such that the role of each division, each department and even
each individual is as autonomous as feasible in the sense that no other way of
splitting up the organization could make them more autonomous. It then becomes
easier for me to get information or make my decision since the information about
my problem and the individuals I need to consult are probably clustered around
me – organizationally if not geographically.
 Note that this organization structuring is in addition to formal business
processes (which also work better in such an organization). The designs for the
organization units are patterns.

Buffering 24

Formal business processes and such organization structuring are very closely
related, but even a business which has ill-defined business processes can gain
from a ‘well-patterned’ structure; indeed it may gain more that a business with
good processes since, in the absence of good processes, it will handle more issues
as ‘exceptions’.
 However, business processes themselves will change. Some will evolve
smoothly in a planned way as supply, manufacture and distribution evolve. Others
will be forced to change rapidly in response to competitors' threats (their new
technology, new ways to market and so on). Amending business processes in a
hurry can be perilous, particularly if the business is accustomed to gradual
change. Patterns not only define objects but, more importantly, define how they
communicate, and special patterns are now available which allow flexibility to be
incorporated in the links between objects. A pattern can, for example, be an
object or structure of objects which acts as an intermediary (buffer) between other
objects, perhaps as an interpreter. Patterns can be objects and object structures but
can also be more generic classes from which objects themselves are derived.
 Processes for most businesses are usually grouped under three umbrella
headings:

 purchase to pay (buying something through paying for it)
 order to cash (receiving an order through the customer’s payment for

it)
 record to report (roughly, all the remaining back-office functions)

To illustrate the introduction of buffering into an established business process and
an organization designed around that process, consider the following simplistic
example of a traditionally-structured business:

 customer services team
 receives a telephoned order from someone in the sales force
 checks customer’s credit status
 checks if stock will be available in the distribution depot either now or

 when the order will need to be shipped
 earmarks existing stock for the order
 requests the manufacture of extra stock if necessary
 prices the order and applies promotional discounts
 despatches the order details to the logistics team

 logistics team

 allocates truck space
 issues instructions to the depot to pick stock at the right time and then

load the allocated truck
 sends a despatch note to the customer’s receiving depot or store (‘this

is what we have sent you’)

 customer services team (again)
 issues an invoice based on the despatch note (which may or may not

reflect 100% of what the customer ordered; some items may be back-
ordered; some might be on a later delivery that day and so on)

The Pattern Organization 25

 receives the customer’s cheque payment (which may or may not be a
payment in full)

 finance ‘accounts receivable’ team

 banks the payment if not sent by bank transfer

There are several ways to map the bulleted () tasks to teams. The split between
customer services and logistics is often on the basis that customer services deals
with individual orders from customers whereas logistics deals with aggregations
of orders and trucking. However, following the principles described earlier, one
acid test for whether the organization is out of kilter with the business processes
is simply whether a lot of communication – particularly two-way communication
– occurs between them. If it does, and in particular if this communication is
between individuals who are checking and expediting rather than simply a result
of systems passing information, then we need to see if there is some other ‘cut’ of
the organization which will result in the groups who spend a lot of time
communicating being part of the same team.
 However, do teams matter; and what is a team? In principle, the business
could be a collection of individuals subservient to computer-driven business
processes. But this takes us back to the fundamental issue of whether we want a
monolithic ‘top down’ business, and the contention in The Coevolving
Organization was that there are better ways to structure a business than that.
 If we elect to follow the principles outlined therein, we try to define areas
which are as autonomous as possible. This means that they need to communicate
with other areas as little as possible. This does not mean that information must be
squirreled away within each coevolving object – the customer services team for
example – but that each team must be free to fulfil its own objectives and make
decisions without constantly needing decisions or approvals from another
individual or team. It does mean that information which is purely about the
internal workings of a team does not need to be passed on. Furthermore, such
information should not be visible to the team’s internal ‘suppliers’ such as those
downstream – logistics for example, or internal ‘customers’ upstream – the sales-
force, for example. Customer services are ‘contracting’ with the sales-force to
arrange delivery and accept payment for all orders the sales-force manage to
solicit. In turn, logistics are contracting with customer services to arrange for the
loading and shipment of any orders sent to them by customer services. This
implies – correctly – that the logistics team is invisible to the sales-force! (If I buy
a faulty new car, I tell the dealer to fix it or supply a replacement; it may be the
manufacturer’s fault or shoddy handling in transit or even a fault in a bought-in
accessory; but my contract is with the dealer).

Let us assume now that we have:

 well designed business systems for order-to-cash (as above)
 processes for accommodating exceptions, both real exceptions and

possible exceptions: for example, a customer who, in response to the
hard selling of an important impending promotion by the sales-force,
has ordered slightly in excess of his credit limit

 teams whose grouping and objectives reflect the autonomy principle
outlined above and described at length in The Coevolving

Buffering 26

Organization. These teams can – and probably will – be composed of
smaller teams structured on the same principle which could be
summarised roughly as “autonomy to fulfil their objectives”. These
objectives may (deliberately!) conflict with those of other teams as
described in Chapter 4 of The Coevolving Organization: customer
services wants to achieve on-time delivery with each order containing
exactly what the sales person ordered for the customer (no short
shipments; no item substitutions; no extraneous or damaged items
shipped;…). Why? Because that is their ‘contract’ with the sales-force.
Logistics on the other hand want to send out full trucks when trucks are
available; they want to avoid part-loaded trucks, the need to buy
additional emergency trucking, unbalanced trucks (ones which carry
too many lightweight pallet-loads or too many heavy pallet-loads;
ideally, each truck should be more or less at its volume and weight
limit), and so on

 This is a simple and traditional business structure and probably works well
with small customers. Now assume that business grows and customers become
larger. Big customers, supermarkets for example, order direct, either by phone or
more likely by computer and electronic data transfer. They pay by bank transfer.
Orders to be delivered into just one of their distribution depots may consist of
several truckloads. We have thus added some new business processes:

 direct ordering
 payment by bank transfer

 But we have also fundamentally altered the role of customer services, and
the sales force’s role has become one of business development. Customer services
are now responsible directly to the customer for the fulfilment of each order. The
sales-force’s role and objectives have changed; and customer services’ ‘customer’
is now the real customer. This change may seriously upset the effective working
of both customer services and logistics, and reduce the number of on-time
accurate deliveries until both departments reorganize to accommodate new
processes and new responsibilities.

So how can we handle business process changes like this in such a way that the
teams (and external contacts) with which customer services, logistics and sales
force communicate are insulated from the change?

The Pattern Organization 27

CHAPTER 5

BUFFERING

I
Introd

n the preceding chapter we looked at how we could structure an organization
such that when business processes change, or perhaps when a team changes
its structure as a result of losing or gaining an individual with some key skill,

the teams (and external contacts) with whom each team communicates are
insulated from the change. If teams were completely independent, this would not
be a problem. But teams are linked by both computer systems and personal
contact with other teams. We saw that if we structured the organization correctly
by creating teams which are as autonomous as possible in the sense that any other
way to divide up staff into teams would result in more overall communication
between teams and less within teams, then the knock-on effects of change within
a team on other teams is minimized. But ‘minimized’ here means minimized with
respect to any other way to cut the organization. There is, however, a way to
reduce the impact on other teams further if we are allowed to create some
artificial organization ‘constructs’. Exactly which construct we use depends upon
what we want to achieve.

uction

 One way to reduce the impact is to erect some sort of organizational veneer
which makes a team’s contacts – its visibility to others – look the same
irrespective of changes internally. A hypothetical pattern for this might look
something like:

Veneer pattern
Name: “Team veneer”

Problem: Need to provide an unchanging interface between teams even when the
internal organization of the team or the business processes it supports change.

Context: The team is subject to frequent changes of staff or staff responsibility or
business processes, or the business processes are not well defined and there is
considerable checking, expediting and decision making needed by individuals, or
both. Note that it is impossible to foresee when radical changes to business
processes will be needed, since these may be driven by competition, the economy,
the stock market or other difficult-to-predict forces

Success criteria: A team which, to those who work with it, appears unchanging
and predictable to work with.

Solution: Create formalised interfaces to the team – as seen from other teams and
from the outside (real customers, for example). These formalised interfaces might
be something as simple as a customer services ‘ordering point’, whose function is
to accept orders from internal customers (e.g. the sales-force) or real external
customers in the same way; behind the scenes (i.e. within the team), these orders
may be treated differently but this difference should not be visible to internal or

Buffering 28

external customers. The team operates on the ‘black-box’ principle as described
in ‘From genes to business’ in Chapter 4 of The Coevolving Organization

Rationale: The loss in efficiency caused by creating such black-box interfaces is
marginal when compared with the much larger gain in stability to the business as
a whole. Part of the business – whether one team or some larger organizational
entity – can be reorganized with no visible loss of performance to other groups in
the business which depend on it.
 This is a very high-level pattern. In reality, it is the template for some more
specific patterns for particular business processes. We might have patterns for:

‘team veneer – order acceptance’
‘team veneer – despatch’ (e.g. liaison with logistics)
‘team veneer – future stock availability’ (for example, liaison with
manufacturing for work in progress and with production planning for
querying or adjusting next week’s production)

In these examples, the salient point is the engineering of the person-to-person
interface such that if internal manufacturing were replaced by co-manufacture (by
a third party) or logistics were turned on its head by the outsourcing of depot
operations, each such area appears to other areas to be functioning exactly as
before. The same would apply to a pattern for logistics:

‘team veneer – logistics truck management’

where the design of the logistics team was such that the links between each sub-
team:

 dispatch planning – the amount of stock to be shipped and when
 the allocation of stock to trucks
 stock picking
 truck loading

were ‘veneered’ such that any change to one was invisible to its internal
customers and suppliers. The sub-teams managing stock picking and truck
loading operations are suppliers (of dispatch services) to the stock allocation sub-
team, who in turn are a supplier of stock management and dispatch services to
the dispatch planners, who are, in turn, suppliers of overall dispatch services to
customer services. Note that a business’s products move one way (from
manufacture to customer services to logistics to customer) while the internal
customer/suppliers ‘contracts’ usually work the other way.

This example has been elaborated to demonstrate two points:

 customer services, for example, should have no knowledge of – should
actually be unable to find out (!) – how the orders they send to dispatch
planning are allocated to stock, are loaded and subsequently sent to the
customer. If they can find out, they may start making assumptions (with the
best of intentions…) which will throw deliveries awry when a business
process or organization change occurs somewhere downstream in logistics.

The Pattern Organization 29

 teams (objects) can be contained within others, like a nest of Russian dolls.

And so teams can be built up of sub-teams whose interfaces can also be
veneered. There is, of course, a point of diminishing returns when the sub-
team is so small, perhaps one individual, that it ceases to be sensible or
economic to do so or is too small to make decisions autonomously.

Unfortunately, although this veneer pattern gives some ideas on how to buffer
one area from another, it is too high level and unspecific to be of use. To remedy
this we need to use the object-oriented pattern ideas introduced from page 16
onwards.

Following are the five patterns which are the foundation for buffering and for
solving other related organization or process problems caused by over-tight
coupling of teams or business processes. Each pattern is useful in a specific
situation.

 Adapter (decouples two areas by transforming one interface to
another; this is the fundamental ‘veneer’ pattern)

 Façade (loosely, a variation of Adaptor for an area with many
interfaces)

 Mediator (converts a mesh-like organization or business process
structure into a star)

 Chain of responsibility (decouples requestor from responder when it
cannot be predicted which team or process will handle a request)

 Bridge (decouples variations in definitions – policies, process
definitions and the like – from their implementation)

These names are the ones used by IT system designers, and the IT versions of
these patterns are described by the Gang of Four. They will each be specified in
the format of a pattern using the object-orientated concepts previously introduced
and described using examples from real business organization or processes. The
term ‘requester’ is used to denote anyone from another team or from outside the
business needing to communicate with someone in the team; this communication
could be a phone call, email or business-to-business (i.e. system-to-system)
electronic transaction. For each pattern, a description of the pattern in object-
orientated design language is included. For those unfamiliar with object-
orientated design conventions, the two main types of ‘arrow diagram’ which will
be used are as follows:

class

respondersub-class

requesterclass

respondersub-class

requester

Figure 2 - class and object diagrams

Buffering 30

The shaded upward arrow displayed midway between two classes indicates that
the lower class (‘Electric locomotive’) is a subclass of the upper class
(‘Locomotive’). The solid black arrow displayed usually at the end of a line
connecting two boxes indicates that the item (class or object) at the arrowhead
end is called by the other item. This calling will normally create an instance of an
object of the called-item class.
 Although these patterns are likely to prove the most useful ones in
practice, they do not form a complete pattern language peculiar to certain types of
organization or business process problem. Much less do they form a
comprehensive pattern pool of all possible organizational patterns. They are
intended to provide a foundation on which users can build further patterns
peculiar to specific organization or business process circumstances. And, as with
the edge of chaos, self-organization and highly-optimized tolerance concepts and
the NKCS mechanism, they provide a framework – a language – with which to
analyze and discuss organization and business process issues.

The Pattern Organization 31

Adapter

Problem:
There is a need to change the structure of a team while letting requesters continue
to call in an established way – perhaps because there are so many of them.

Context:
The way in which requesters call cannot be changed, but we need to change the
structure of the team they call.

Success criteria:
Requesters call in the same way and do not realise that the structure of the team
they are calling has changed

Solution:
Create an interface which, to the requester, looks just like the established way to
call. The interface then maps the call to the new team structure, i.e. it converts the
external view of the team to the new internal structure

Requester

Incompatible
interface

Requester

adapter

Responder

Requester

Incompatible
interface

Requester

adapter

Responder

Figure 3 - Adaptor pattern diagram

Buffering 32

Object-orientated design notes
The diagram below shows two ways to use Adapter.
The first uses classes in which subclass ‘adapter’ inherits from two parent classes
‘virtual requestor’ and ‘responder’. As a result of this inheritance, Adapter has
definitions for both interfaces and can convert one to the other and perform the
role of responder (since it inherits responder’s operations as well as its interface).
The second way uses objects: subclass ‘adapter’ does not inherit the responder’s
function but instead simply calls responder using the correct interface.

‘virtual responder’
responder

requester

‘virtual responder’

adapter

responder
requester

Class adapter

Object adapter

adapter

‘virtual responder’
responder

requester

‘virtual responder’

adapter

responder
requester

Class adapter

Object adapter

adapter

Figure 4 - Adaptor pattern OMT

OMT is Object Modelling Technique – see page 61

The Pattern Organization 33

Façade

Problem:
Requesters are finding it difficult to get in touch with the appropriate responder in
the team

Context:
The team has many different contact points for internal and external requesters.
Most requesters have a standard request and relatively few have specialised
requests.

Success criteria:
Low level of redirected calls

Solution:
Create a standard interface for ‘normal’ calls. The sub-teams behind this interface
are not regrouped into a new team but remain in their own sub-teams because this
is otherwise the most autonomous way to split the team.

Requesters

Responders

Facade

Responders

Requesters

Responders

Facade

Responders

Facade

Responders

Figure 5 - Facade pattern diagram

Buffering 34

Object-orientated design notes
The diagram below shows how to use Façade.

requestor facade

target1

target2

target3

requestor facade

target1

target2

target3

Figure 6 - Facade pattern OMT

Façade is implemented with classes (note that the targets are not subclasses of
Façade). For simplicity, only three of the six targets are shown in the diagram.

The Pattern Organization 35

Mediator

Problem:
Team communication is over-complex even though individual teams
communicate with others in a simple way

Context:
Teams in all or part of the business communicate with each other in a simple and
logical way (i.e. the team groups are the most autonomous possible), but the
overall network is complex, i.e. is a mesh rather then a hierarchy or sequence of
the type A=>B; B=>C.

Success criteria:
Neither communications nor requests for decisions go round in circles.

Solution:
Create a central point (sub-team or electronic equivalent) through which all
communications between these teams are directed. Communications circles can
be detected and prevented. This converts a mesh into a ‘star’.

MediatorMediator

Figure 7 - Mediator pattern diagram

Buffering 36

Object-orientated design notes
The diagram below shows how to use Mediator. As before, only some of the
targets are shown.

abstract
mediator

target1

target2

target3

concrete
mediator

abstract
target

abstract
mediator

target1

target2

target3

concrete
mediator

abstract
target

Figure 8 - Mediator pattern OMT

The Pattern Organization 37

Chain of responsibility

Problem:
If the requester’s request is arcane and the number of specialities handled by the
team is large, it may be difficult for a central point to decide where the request
should be handled.

Context:
Large teams with many specialities where requesters generally do not know who
to contact. A façade (above) can handle common calls but lets those needing
specialist support communicate with the specialists directly. This, however,
assumes that the requester knows which specialist will handle the request.
Requesters are emails and business transactions rather than human requesters.

Success criteria:
The requester is unaware that the call is being passed from specialist to less
specialist sub-teams.

Solution:
Requesters are passed initially to a specialist sub-team which might be able to
resolve the call. If they cannot, the call is passed to a less specialist sub-team, and
so on until a general ‘catch-all’ sub-team fields the call.
In the example below, a requester makes a request without knowing who would
handle it. If team Responder 1 is unable to handle it, the request is passed to
Responder 2 and so on – without reference to the requester who has no idea (and
cannot find out) who will handle the request.

Requester

1st responder

2nd responder

3rd responder

4th responder

Requester

1st responder

2nd responder

3rd responder

4th responder

Requester

1st responder

2nd responder

3rd responder

4th responder

Requester

1st responder

2nd responder

3rd responder

4th responder

Figure 9 - Chain of responsibility diagram

Typically (not shown) there would be an additional ‘request handler’ operation
which enabled a request to be passed on to the next responder in the chain.

Buffering 38

Object-orientated design notes
The diagram below shows how to use Chain-of-responsibility. As before, not all
the targets are shown.

abstract target

target1

requestor

target2

target3

get successorabstract target

target1

requestor

target2

target3

get successor

Figure 10 - Chain of responsibility OMT

The various targets – the classes which, for example, undertake progressively less
specialised ‘help-desk’ functions – are all subclasses of ‘abstract target’. The ‘get
successor’ internal request allows any target to request that its successor is
invoked.

The Pattern Organization 39

Bridge

Problem:
Adding a new business process results in an explosion of country-specific
implementations.

Context:
Corporate manuals exist on how each department must be structured and which
processes it must follow. Departments structured along these lines exist in each
country in which the business trades. Additions and (occasionally) deletions to
the corporate manual occur regularly.

Success criteria:
Additions and deletions to the processes within the corporate manual can be
implemented in each country without a ‘combinatorial explosion’ of variations.

Solution:
Instead of each country-specific team having manuals derived from the main
corporate manual detailing each process as it applies in that country, the corporate
manual and country-specific implementations are decoupled as in the example
below. The first diagram shows what happens when the definitions (classes) are
not decoupled from the country-specific implementations. The descriptions of
approved training methods, company personnel grading principles and – to be
newly added – company career planning guidelines are intermixed with the
country-specific implementations of those policies. When HR develops a new
speciality, succession planning for example, or moves into a new country, the
number of implementations explodes; for example, for a (conservative) five
policy areas to be implemented in twelve countries, there are sixty
implementations. The fault is that we have failed to distinguish between the
policy definitions (which are not country-specific) and the implementations
(which are).
 The second diagram shows the simplification which results from separating
the two. It is worth clarifying why this separation is so successful. What we have
actually done is to separate and ring-fence the two types of variation: additional
policies and additional countries are not related.

Buffering 40

definitions

implementations

career
planning

UK UK

grading
principles

training

US

etc

US

UK

etc

US

etc

HR
manual

definitions

implementations

career
planning

UK UK

grading
principles

training

US

etc

US

UK

etc

US

etc

HR
manual

Figure 11 - Bridge pattern 'before' diagram

training career
planning

Create country manual

definitions

implementations

grading
principles

HR manual

UK US etc

trainingtraining career
planning

Create country manual

definitions

implementations

grading
principles
grading
principles

HR manualHR manual

UKUK USUS etcetc

Figure 12 - Bridge pattern 'after' diagram

The Pattern Organization 41

Object-orientated design notes
The diagram below shows how to use Bridge.

b r i d g e

concrete
definition

abstract implementation

concrete implementation 1

concrete implementation 2

concrete implementation 3
concrete
definition

concrete
definition

abstract
definition

concrete implementation 4

b r i d g e

concrete
definition

abstract implementation

concrete implementation 1

concrete implementation 2

concrete implementation 3
concrete
definition

concrete
definition

abstract
definition

concrete implementation 4

Figure 13 - Bridge pattern OMT

The symbol is described on page 61.

Deploying buffers
We said earlier that these five patterns are not the only ones which can be used
for describing organization structures and not even the only ones which might be
employed as buffer patterns, but they are the most useful ones. So exactly where
do we deploy them? We could conceivably buffer every business process and its
supporting organisation. But buffering has a cost:

 business processes would need additional bridge processes (buffers)
between them instead of one process feeding seamlessly to the next

 it may need more staff. A team ‘fine-tuned’ to operate one process or a

set of processes may need extra staff to handle the buffer itself. For
example, a customer services team which was set up to handle orders
only from the sales force may need disproportionately more people if it
is to handle orders from retail customers or wholesalers or via
electronic data interchange as well in a transparent way and maintain
the same quality of service. In other words, setting up the organization
and processes to handle any source of order may cost more than
creating dedicated teams to handle each type or order.

Buffering 42

Since buffers are only of value if the processes or organization change, it sounds
sensible to use them to ring-fence processes or teams which are more likely to
change and to leave other more static areas alone. This, to readers of The Robust
Organization at least, should look suspiciously like Highly Optimized
Tolerance…

The Pattern Organization 43

CHAPTER 5

BUFFER PLACEMENT

T
Introduc

he previous chapter described the most common types of buffer pattern. It
concluded by noting that inserting buffers between processes and between
organizational groups such as small teams had a cost: the buffers were

themselves additional (but small) processes which may introduce some
inefficiency, and the resulting structure may need more staff. We thus need some
rules to determine where it is cost effective to insert buffers and where it is not.
More precisely, we want a way to specify where buffers should be placed based
on an analysis of risk – what the likelihood is of a process or team being affected
by any change which would result in its interfaces to other processes or teams
altering significantly. This is exactly the type of problem Highly Optimized
Tolerance addresses.

tion

Highly Optimized Tolerance (HOT)
HOT is described at length in The Robust Organization. What follows is a brief
summary which uses the same forest fire example.
 Most forests which are left in their wild state – not managed in any way –
will occasionally experience forest fires. These fires burn until either a natural
firebreak is encountered (perhaps an area left fallow by a previous fire) or the
forest is totally gutted. Trees re-grow more or less at random through self-seeding
from the remaining trees. Other things being equal, a forest which is densely
wooded is more likely to experience a large fire, one covering a wide area, than a
forest which is sparsely wooded because the fire in the dense forest can jump
easily from tree to tree with no gaps to hinder it. There is thus a balance between
the tree density and impact of a spark: the more trees in any one area, the more
likely it is that a spark will have a widespread impact.
 Forests used for commercial lumbering on the other hand have firebreaks
deliberately constructed. Firebreaks have a cost, not just of initially felling trees
and subsequently keeping the firebreak clear but in lost revenue: each firebreak
means fewer trees to harvest. The forest manager thus needs to balance the
commercial yield from the forest – the cost of creating and maintaining the
firebreak plus the lost revenue from keeping areas fallow when they could contain
valuable trees – with the revenue loss resulting from a fire if one took place. If
sparks were equally likely to occur in any area of the forest and this likelihood
were known, the positioning of firebreaks is relatively easy to calculate. A square
forest would have a rectangular grid of firebreaks looking something like that
shown in the diagram below. The light areas are parts where there are no trees,
either because there is a firebreak or because a tree has yet to grow there (perhaps
it was burned down in a previous fire and its site has not yet been reseeded).

Buffer placement 44

 This diagram shows a forest

where sparks are equally
likely to happen anywhere.
There is no guarantee that if a
spark occurs, a fire will
inexorably follow; the spark
may hit a vacant site or even a
firebreak.
However, if sparks are
concentrated in particular
areas of the forest (i.e. the
distribution of sparks is not
random), then it is clearly
better value for money to
place firebreaks closer
together in those areas where
fires are more likely to start

and to space them widely elsewhere. For example, assume that there is a picnic
site at the centre of the forest and that sparks from careless picnickers are thus
more likely in the neighbourhood of the centre than elsewhere. The optimum
spacing of straight-line firebreaks would then look something like that shown

below, although there are
other ways to construct
firebreaks which are not
straight lines. In this diagram,
the centre of the forest is
closely ring-fenced by
firebreaks. A fire breaking out
there cannot spread very far.
The corners of the forest, on
the other hand, have been
assumed to be areas where
sparks are relatively unlikely
to occur. Creating firebreaks
in this way maximizes the
yield for a particular
distribution (likelihood
pattern) of sparks.

Figure 14 - HOT with a. equal and b. centred probability of sparks

However, if a spark hits one of the corner areas – which is possible but much less
likely than one hitting the central area, the damage is much greater since there is
more forest to burn between the wider-spaced firebreaks than in the centre.

More generally, HOT has three characteristics:

The Pattern Organization 45

 design is used to apply a resource (firebreak) such that the overall yield is

maximized (which is normally the same as minimising losses). The
resource is either limited or has a cost associated with it which offsets the
value of the yield: applying too much resource can reduce the yield

 the resource reduces the total losses sustained as a result of some external

event (spark). These losses may be caused by a chain reaction of the initial
event (an external spark ignites a tree) causing other events (fire spreading
to neighbours)

 the external events happen with some known probability distribution (some

areas of the forest may be more likely to receive an external spark than
others)

One consequence is that the greater yield (average tree density) renders the forest
more vulnerable to unanticipated (rare) external events. But the HOT forest is
also the most robust for the particular amount of resource deployed. And
‘robustness’ here is simply a measure of how stable the yield is in the face of
anticipated risks.

Buffer placement
This robustness is exactly what we are seeking for deployment of process or
organizational buffers. Simplistically, we can:

 identify the major areas within the business which have historically been
most subject to change, or which, with knowledge of the business’s own
strategy and what is happening to competitors, will be most likely to change

 within each such area, rank the business processes or organizational groups

in order of likelihood of change

 define suitable buffer patterns for each business process or organizational
group

 evaluate the cost of implementing and operating each buffer and estimate

the cost of disruption if the typical changes actually occur

 implement buffers for those business process or organization groups for
which they are cost effective

Anyone familiar with HOT may detect two subtle differences between HOT’s
formulation and what is proposed here. HOT uses the likelihood of an external
event such as a spark occurring (which may or may not have consequences such a
fire) whereas we have ignored any root cause of change and simply estimated the
likelihood of the change happening. In addition, HOT tries to position barriers
such that the overall yield is maximized, whereas in this example we are notching
up benefits area by area. In our context, fortunately, these differences are
irrelevant.

Buffer placement 46

The Pattern Organization 47

CHAPTER 6

FROM IT TO ORGANIZATION

T
Introduc

he use of patterns and decomposition in object-orientated design and
programming has been plumbed in depth since 1995. The converse – the
use of ideas developed for systems architecture for designing organisations

– is, however, an almost virgin field. In answer to the unspoken ‘why bother’, it is
worth noting that computer operating systems such as Windows XP and their
related network technology are arguably the most complex artefacts ever
designed. Reproduction and natural selection together have certainly created more
complex living forms, but computers and networks are designed. Most of the
problems faced by those who are redesigning the structures of their businesses
have already been faced, generally successfully, by IT practitioners.

tion

 IT practitioners also learned one lesson many years ago: to avoid
monolithic (all in one piece) systems, and this applies to business application
systems as well as computer operating systems. Since the message of this book
and its predecessors is decentralization, or at least the avoidance of over-
centralization, it is worth looking at what was wrong with the original monolithic
systems.

There were four fundamental issues:

 size
 multifaceted nature
 impact of failure
 complexity

And to make life more difficult, these were found to be interrelated.

Size on its own is not inherently a problem. Designing large things just takes
longer or needs more designers than small things. But the science, or rather art, of
estimating how long a new operating system would take to build and test is
embryonic. IBM faced this on a grand scale when it tried to design from scratch
an operating system for a complete range of computers suitable for anything from
a tiny office to the largest corporation or science research establishment. The
initial result, OS/360, eventually worked and derivatives are still in use today, but
the delays were severely embarrassing to the world’s then largest computer
manufacturer, the cost overruns were frightening, and the product was highly
unreliable at the outset.
 It was found that there were simply not enough technical and project
management people available anywhere with the right level of experience.
Designing and writing a computer operating system is not like designing and
building the steelwork shell of a skyscraper, where one floor is very much like the
one below and design and construction are largely sequential and repetitive. Once
engineers and construction staff have designed or built one floor, they simply do
the same thing one floor up. In other areas, working in parallel to speed things up

From IT to Organization 48

is possible. Railways, for example, are built this way, but perhaps the best and
most relevant example is the creation of mathematical tables before computers
were invented. The world of tables has largely disappeared, but at one time they
were indispensable for tradesmen, builders, designers, actuaries, bankers and,
most notably, navigators to whom accurate astronomical tables were essential. A
mathematician would devise a formula and break the evaluation of it into simple
discrete steps. He or she (almost always a ‘he’) would then calculate some
‘pivotal’ values – the formula evaluated at well-spaced intervals (‘every 100’,
say). Filling in the gaps would be farmed out to people known as ‘computers’
who would undertake the very large number of simple and tediously repetitive
calculations necessary either by hand or using a simple mechanical calculator.
Calculations would normally be done in duplicate by different people and the
results cross-checked. Until the final printing, therefore, when results were
collated, it was possible to calculate the values needed for large tables quite
quickly using lots of human ‘computers’ working in parallel. Writing the
programs which comprise a computer operating system like OS/360 is a totally
different process. In general, each piece is different in nature from each other
part; very little is repetitive. It is multifaceted, and this makes design and writing
take a lot longer as there are no economies of scale.

Complexity
OS/360 was, for its time, large and multifaceted, but it was also complex. Much
of it was one large chunk of programming. This was customised on first
installation to suit the computer and devices connected to it, but the result ran as
one piece. This meant that failure in any one line of programming could bring
down the entire system rather than just abort the function being undertaken. For
example, a fault in the part of the system which dealt with sending lines of print
to a printer could abort not just printing but everything else as well. It was only
much later (with MVS – loosely a grandchild generation of OS/360) that each
major part of the system was isolated such that any failure there would be dealt
with by failure management programs written specifically to cope with failures in
that area. As far as is known, the additional lessons from the development of
Highly Optimized Tolerance to ring-fence areas during design to a degree
proportionate to the likelihood of a failure has not yet been incorporated into any
computer operating system, although Microsoft are aware of it. The source of the
complexity was only realised later: although the very many programs which
comprise OS/360 were designed to link to each other (where necessary) via
formally-documented interfaces which specified what information would be
passed from the caller to the program being called, little or no effort had been
made to design things such that the caller was prohibited from finding out what
the program being called actually did; it could and often did peek into the called
program’s private information or make assumptions about how it worked or both.
This was bad practice at design time but often fatal when changes were made to
the called program. These unofficial ‘cross-connections’ between programs could
lead to knock-on effects when the called program then called yet another one.
These side-effects are a hallmark of complexity: instead of a simple controllable
hierarchy where program A calls program B to do something on its behalf without
knowing – without being able to know – how it does it, we have a skein of cross-
connections whose results are unpredictable.

The Pattern Organization 49

 Large multifaceted systems, particularly computer operating systems and
networks, use precisely-specified interfaces between their thousands of
constituent parts. Furthermore, these interfaces are ‘layered’ in the sense that
program A links to program C via program B and has no idea how to talk directly
to program C or how program B does so. Neither does A know how B or C work.
Networking and especially router technology was touched on in The Coevolving
Organization. It is a fertile source of the best examples of layering (the OSI
seven-layer model, for example) but also contains something more subtle which
as far as is known has not been covered elsewhere before: the dynamic (time-
based) nature of interaction between objects when they are constrained. For
example, if objects W, X and Y are each coupled to object Z and are interacting
with it, Z may be unable to respond to Y because it is too busy responding to W
and X which either got in first or are of higher priority. This has close parallels
with how traffic is managed over constrained communications links where data
packets are expedited, re-prioritised, delayed and sometimes deliberately dropped.

Network routing
Data traffic from one site to another is sent and received using items of equipment
called ‘routers’. Routers can if necessary pass data packets from point to point
over many individual links until they reach their eventual destination. They
handle transient errors and reroute traffic if a link fails. Routers need to exchange
information on how to get from A to B when several links are involved (for
example, A to X; X to Y; Y to Z and finally Z to B). If an individual link fails,
routers directly connected to it pass the word on to other routers (“avoid link X to
Y – it is faulty; try another way around”). Since this exchange of information
between routers is itself data traffic and may take some time to percolate around a
large network, it is possible that the failing link may right itself again before the
information about its failure had arrived at the farthest reaches of the network.
There will then be contradictory messages (“link X to Y is faulty” and “link X to
Y is OK”) circulating at the same time which, in a mesh (any to any) network can
cause a storm of conflicting information to fly between routers.
 The Coevolving Organization described a fundamental problem faced by
all network designers: whether to split a network into autonomous chunks so that
such ‘broadcast storms’ can be contained within their chunk of the network
(which then makes the network of limited use to those who want worldwide
communication) or to stay with a single network and risk such disasters which
have a high impact but are relatively rare. It also described the usual compromise:
to create freestanding areas and then link them together at one or two points on
the boundaries that separate them. The routers in area A would then contain a
map of the links in area A alone. Any links in another area B would be invisible
from within A. All that a router in A needs to know is that any packet of data
addressed to a destination somewhere in B has to be forwarded to a special router
on area A’s boundary. This boundary router would then take responsibility for
sending it to its opposite number in B that would be fully up to date with what
routes in B led where.
 Some communication of network information across the areas has to occur.
If not, a router in A would not know which destinations lay in B. But information
about what links lead where in B and which ones were currently operational stays
confined to B. Routers in area A will discuss link availability with each other.
Routers in B will do likewise. But this will not happen between a router in A and

From IT to Organization 50

a router in B. A big failure in one area will have limited impact on another area.
Both data and the information about link availability can flow uninterrupted
around A even when B is struggling.
 Since this looks like a good solution, it raises the question of whether we
should create more areas like the creation of the progressively smaller and more
numerous cells used by mobile phones in urban areas where the density of phones
is high. This, however, introduces problems of its own. The fewer the points of
interconnection between A and B the greater the dependence on the availability of
the boundary routers (and the links between them) that look after all
communication between A and B. What we have gained in resilience within each
area we have lost in the connections between areas. In coevolution terms, the
areas are objects. The links between boundary routers give the C-coupling
between areas. The (average) number of links between routers in any one area
gives K. The effects of a temporary technical problem – perhaps information
about a link failure – which occurs in a high-K area reverberates around the
whole area in an unpredictable way. If the routers in an area are connected in a
hierarchy or in the extreme case a simple low-K star with each link connected
directly to the boundary router, this impact of network failures is confined. But
now the system has become more vulnerable to a failure at the centre of the star.
Managing a star network is easier than managing a mesh. Such a network is very
resilient to failure outside the centre but a failure at the centre itself can have a
catastrophic impact.

The Internet
Throughout the 1990s, the Internet appeared to be an archetypal example of a
system which had evolved ‘naturally’ like a biological system in response to user
demand rather than having been formally designed. Voluminous data on its
physical structure and performance are available and these data show the ‘power-
law’ signatures of self-organization (see The Coevolving Organization). But
although the Internet has no central control and the traffic patterns may appear to
adapt automatically to congestion or failure of a link without intervention by the
user or even by the communications link supplier, it now appears likely that this
power-law behaviour is a consequence of the vast amount of design for both
performance and resilience which has gone into the Internet’s TCP and IP
communications protocols and their physical implementation in routers and is not
a natural consequence of the self-evolution of the Internet. In other words, the
Internet’s apparent self-organized behaviour is a consequence instead of network
designers attempting to optimize link usage while minimising congestion and
minimising the impact of failures on the Internet as a whole. Inevitably, these
designers tried to ensure that the impacts of outages at the most likely points of
failure were contained. So instead of being a self-organized system, the Internet
looks like an example of HOT.
 Private communications networks and the Internet are thus both examples
of designed systems rather than ones which ‘just growed like Topsy’. As noted
above, the structure of both private networks and the Internet will have areas
where the routers at each site know of the existence of each other site and how to
contact them directly but outside which communication is only possible via
intermediary ‘boundary’ routers. And if the design is done well, the sizing and
positioning of these ‘autonomous networks’ and the way in which they are
coupled using boundary routers would have been done only after careful

The Pattern Organization 51

evaluation of the likelihood of failure at different points in the network and the
impact of such as failure on the entire network. The designer would attempt to
minimize the network-wide effect of likely failures subject to the constraint that
having too many small autonomous networks can reduce the reliability of the
network. This is a result of traffic between areas travelling via a few critical
boundary routers and their associated links. Furthermore, resilience is reduced
because there are fewer ways for traffic between areas to be rerouted.

Business processes
This same principle can be applied when structuring business processes and their
associated organizational groups. Breaking the processes into many discrete areas
which are buffered using one of the buffer patterns described earlier can make
transaction flow between processes highly dependent on the availability and
performance of the buffers themselves. Too many buffers can thus unintentionally
create artificial points of congestion and failure. Too few – particularly at the
points where change is most likely – subjects the organization to the internal
chaos which buffering was intended to obviate.
 The Coevolving Organization described what happens in a real
organization – a collection of general practitioners’ (family doctors’) practices –
when the normally independent practices combined their power to buy services
from a particular hospital. If, when the practices were separate, practice A pushed
hospital X to drop its costs for a particular surgical procedure and practice B did
the same but not at the same time, the hospital may find different ways to make
the economies demanded by each practice. It has time to react to the first demand
before responding to the second. Its link (C-coupling) back to practice A may
result, for example, in an increase in costs for practice A elsewhere in its budget,
like the boxer riding a punch and coming forward again. But when practices
combine their C-couplings, the result is similar to the effect on a boxer being hit
by several punches at the same time and in the same place. Merely adding C-
couplings together may well understate the resulting impact on the recipient
because the couplings now act in a coordinated way and make the same demands,
volume discount for example, at the same time. This co-ordination comes via the
C-couplings between the practices. So the net impact of links between areas can
be more complex than is at first apparent. The impact of a C-coupling ‘push’ from
two or more ‘attacking’ objects to a target object depends on the time lapse
between the respective pushes. It is greatest when impacts coordinated by C-
couplings between the attacking objects enable pressure to be applied to the target
object at the same time.
 But what of the reactions of the target object – the hospital in the
preceding example? The simplistic assumption is that it will react to simultaneous
impacts from C-coupled ‘attackers’ additively (just add up the individual
impacts). But real target objects are not that simple. The hospital will have limited
capability to respond if fifty local general practitioner groups all ask for different
priorities or service discounts at the same time. If for no other reason, the
hospital’s accountants and service delivery managers will be unable to respond to
all the requests at once because they themselves form a bottleneck.
Communications network designers are familiar with this very problem – data
packets arriving internally at a site’s router for delivery to another site do not
normally arrive at a predicable steady rate. Instead, they arrive in bursts which
contain data from different users working independently. There is fortunately no

From IT to Organization 52

person-to-person C-coupling, or the impact if everyone conspired to send large
quantities of data at the same time would be a solid traffic jam. Nevertheless, the
traffic is targeted at a device (the router) which is the gateway to a
communications link with a restricted capacity. In such circumstances, the
router’s job is to prioritise, delay and sometimes even drop data packets such that
the link capacity is used to best effect.

Programs and teams
The Coevolving Organization called each organization entity, a department for
example, an object, although the reason may not have been apparent at the time.
Let us equate each such organization object with a computer program which is
part of, say, a computer operating system. If an object (customer services, say)
makes assumptions about how another object (logistics, say) which is its ‘internal
service supplier’ (the supplier of warehousing and delivery services to customer
services) will fulfil its ‘supplier’ contract, then any change in the logistics
organization can have a knock-on effect on customer services, irrespective of the
formal business processes they both adhere to. The same is true if logistics makes
some assumptions about orders sent to it by customer services for delivery.
Perhaps customer services had been in the (laudable) habit of checking that
manufacturing had sufficient work in progress which will result in enough
manufactured stock being available for a delivery next week. If customer services
cease doing this, perhaps because the individual concerned moves to another role
or because the team is reorganized, logistics will suddenly find they have stock
shortfalls for no apparent reason.
 If computer programs can be equated to organizational entities – objects,
what is the equivalent of the business processes that the organization (i.e. the
supporting teams) tries to correspond to? The short answer is that programs also
correspond to business processes. (Note that we are not necessarily talking about
the programs, perhaps part of applications systems such as SAP AG’s R/3, which
are used to automate the business processes.) This imprecision arises from the
fact that a high-level business process is built up from smaller processes, and that
supporting staff may be organized into teams which cover sub-processes within
the high level process, or alternatively more than one process – as illustrated in
the diagram which follows:

Business process Business process

TEAM C

Larger business process (e.g. order to cash)

TEAM A

Business process

TEAM B

Business process Business process

TEAM D

Business process Business process

TEAM C

Larger business process (e.g. order to cash)

TEAM A

Business process

TEAM B

Business process Business process

TEAM D

The Pattern Organization 53

And how do we define where the boundaries of either the business processes or
the supporting teams should be? By:

 identifying what are the smallest units which are most autonomous, i.e.
most independent of their peers. They are only connected to their parent in
the hierarchy which is either an organization parent (a site asset
management accounting team’s being part of the country Finance
organization) or a business process parent.

 identifying where likely changes will occur, either in business process or in

organization (there may be tentative plans to outsource IT Service Delivery
for example)

When we know the boundaries, we use HOT principles to insert buffers where
they are most cost effective.

The Pattern Organization 55

CHAPTER 8

REFERENCE MATERIAL

Patterns and wholeness
 Chris Alexander (references 4, 5 and 6) was the first to give an analytical
exposition of why buildings and collections of buildings “don’t work” – why they
often do not function as intended and why they are unpleasant to inhabit. His
starting point was to analyse how abstract ‘things’ – which may be supporting or
conflicting – interact, and how misfits between these ‘things’ and their
environment can be minimized. Alexander’s work spawned considerable interest
from other areas, notably object-orientated software design (see The Coevolving
Organization Annex – Information Technology). Appendix 2 of reference 4
contains the proof of a highly relevant theorem: “given a system of binary
stochastic variables, some of them pair-wise dependent, which satisfy certain
conditions, how should this system be decomposed into a set of subsystems such
that the information transfer between the subsystems is a minimum”. The
significance of this to designing an organization should be readily apparent to
readers of The Coevolving Organization (see Chapter 4 – How big should an
object be?): one design criterion for selecting coevolving objects is that they
naturally communicate between themselves as little as possible (i.e.
communication needed by business processes is primarily within objects). If this
is not true, the carving up of the business into objects has been done wrongly and
there is a better way to do so which concentrates communication within objects
and reduces it between objects. One can (loosely…) apply the formulation of
HOT PLR (see The Robust Organization): if we have a fixed maximum number
of barriers between business areas, we want to place the barriers such that the
communication between areas (i.e. across the barriers) is minimized relative to
any other way of placing barriers. Alexander introduced the idea of ‘patterns’ (in
reference 5a) which can be used at a local (decentralized) level to create
structures – which in our case are the internal processes of organization units –
each of which has the most appropriate fit for its purpose.
 Alexander’s best-known work (reference 5b) describes 253 patterns which
could be used to create building and spaces which are ‘alive’ – meaning that they
fulfil their function but more importantly that the inhabitants ‘feel at home’ in
them, something difficult to quantify but very real to the inhabitants themselves.
This book is one of a three-part series. The first (5a) describes the origins of
patterns, pattern languages and pattern pools and is the best place to start –
particularly for those who aren’t architects but are fascinated by Alexander’s
ideas. The third book in the series (reference 5c) covers in great detail the
implementation of Alexander’s ideas in a large-scale design process for the
University of Oregon.
 Alexander’s later series of four books (references 6a though 6d) takes
things much further. The first (6a) revisits the need for a successful building to be
‘alive’. It characterises this ‘life’ as the way in which certain features of buildings
have an innate connection to human feelings. Alexander proposes that this life is
the result of using up to fifteen basic geometrical forms to create the ‘wholeness’
of a structure. This, in turn, engenders the subjective feeling that these structures

Reference material 56

are ‘right’. In other words, what makes good architecture – architecture which
people feel ‘easy’ with – is amenable to analysis. In Alexander’s words (page
236), “Systems…which have these fifteen properties to a strong degree will be
alive, and the more these properties are present, the more the systems which
contain them will be alive”. The second book (6b) builds on the first and
demonstrates how simple evolutionary processes resembling natural growth –
‘structure-preserving transformations’ – can be applied to these forms to create
new structures or to flesh out and enhance existing structures. These
transformations are, in fact, ‘active’ versions of the geometric forms themselves.
In other words, each geometric form is used bootstrap fashion to grow itself and
to assist the growth of other forms. The bootstrapping process is applied across
the embryonic structure in a ten-step iterative sequence which enables the
burgeoning forms to evolve with their neighbours in a coherent way such that the
‘wholeness’ of the structure, and hence its effect on the feelings of its inhabitants,
is preserved and enhanced. The third volume (6c), which has not yet been
published, describes a large number of ‘living’ buildings and spaces designed by
Alexander and others. The final book (6d) is a deep and often mystic reflection on
the more fundamental issues of consciousness, the nature of self and, above all
else, wholeness – the indivisibility of self from the outside world. Alexander
summarised the relationship between his Nature of Order and current complexity
theory in reference 8.

Object orientated design
The Gang of Four’s ‘bible’ (reference 1) is the standard textbook on patterns for
object-orientated design. Like Alexander’s Notes, it started life as joint-author
Erich Gamma’s PhD thesis. It contains 23 patterns grouped into 5 creational
patterns, 7 structural patterns and 11 behavioural patterns. A few (such as
Adaptor) apply mainly to classes but most apply to objects. The difference
between the two is roughly the difference between a design handbook or blueprint
(which, after design is complete, are fixed) and real-life operation where objects
can invoke the services of other objects in a dynamic and unpredictable fashion.

 Class-type pattern Object-type pattern

Creational Create objects using
subclasses

Create objects by using the services
of other objects (none of the five
buffer patterns are in this category)

Structural

Compose classes
using inheritance
(Adaptor1 is an
example)

Define ways to assemble objects
(Adaptor, Bridge and Façade are
examples)

Behavioural
Define flow of
control or a process
using inheritance

Describe how several objects work
together to perform a task which no
single object can perform (Chain of
Responsibility and Mediator are
examples)

Those without an IT background or unfamiliar with object-orientated
programming and the box-and-line diagrams of Object Modelling Technique

1 Adaptor appears twice in this table as it can be used as a class pattern and as an object pattern – as
illustrated on page 32

The Pattern Organization 57

(OMT)2 used earlier to illustrate the class and object relationships for the five
buffer patters may find reference 1 hard going. If so, reference 2 provides a
slower-paced introduction which explains how using patterns can solve some of
the problems (such as huge inheritance trees) caused by using object-orientated
design slavishly.

2 or its successor Unified Modelling Language (UML). We have used OMT for consistency with the
Gang of Four’s “Design Patterns”

Questions and Answers 58

CHAPTER 9

QUESTIONS AND ANSWERS

Q: You showed earlier that there were two steps to creating good organization
groups. The first simply minimized interaction between each team and other
teams (following Alexander). The second permitted some artificial organization
design constructs – façades and the like (following the Gang of Four) – whose
aim was to minimize further the knock-on effects of changes within teams. This
sounds somewhat familiar…

A: It should not have escaped readers of The Coevolving Organization and The
Robust Organization that there is a strong analogy between:

 ‘edge of chaos’ – the optimal point to which to decentralize if we are
restricted to using simple more-or-less random changes within an
organization, and

 Alexander-like simple minimization of interactions between teams

and also between:

 ‘highly optimized tolerance’ which allows the edge of chaos point to
move further in the direction of chaos (and thus be more optimal) if we
are allowed the freedom to impose artificial designs on the
organization, and

 the object-orientated artificial organization constructs

In other words, if we know roughly how an organization reacts (via its business
processes) to changes, whether external (attacks from a competitor, for example)
or internal, and in the light of this knowledge apply deliberate design to how
processes and the teams running them interact, the more successfully it can
operate its linked series of business processes without major disruption when a
foreseeable change occurs to the business processes. We would identify areas of
likely variability in advance and create façades and bridges to buffer processes
from each other. This does, of course, leave the business exposed to unlikely
changes. The buffers are equivalent to the HOT firebreaks which are placed to
isolate areas most likely to be hit by a spark at the expense of other areas where
sparks are much less likely. In business process terms, stable areas – ones less
likely to suffer radical process change – are left unbuffered. This makes the effect
of an unanticipated change greater because the business processes remain tightly
coupled and the knock on effect of a change is more far reaching.

Q: I’m an architect and I don’t fully buy your argument about splitting things into
pieces which are as autonomous as possible. This is how urban planning worked
twenty years ago – and to some extent still does – creating isolated groups of

The Pattern Organization 59

houses and shops connected by major roads. Superficially fine and ‘clean’ on a
design plan, except that people don’t live in this artificially segregated way.

A: Correct. And this is also true of how people actually work in organizations,
where the patterns of communication and, in larger offices and campuses, the
patterns of people movement are a complex set of overlapped semi-autonomous
groups. Some groups are, indeed, driven by business processes and the
organization structure supporting them (i.e. the ‘official’ family tree). Other
overlapping groups emerge from cross-area task forces, matrix management and
social ties. Instead of a tree structure, the result is a ‘semi-lattice’ – a tree in
which each leaf can be attached to more than one twig, and each twig to more
than one branch and so on. Alexander highlighted this in a paper (reference 7)
which was shunned by the ‘keep it clean and simple’ urban planners who felt it
spoiled their elegant but unworldly designs.

‘Official’ autonomous business-
process based groupings

Informal social groupings at work‘Official’ autonomous business-
process based groupings

Informal social groupings at work

Figure 15 - Trees and semi-lattices

Q: You said that different objects can have identical interfaces but are entitled to
act differently in response to identical requests. But you also highlighted the
similarity between the collection of requests which can be presented to an object
and a Pattern Language. Does this mean that different patterns mean different
things to different people?

A: We said earlier that the collection of all valid requests to an object is called its
interface. The different formats of requests are called ‘signatures’, so an interface
is a collection of signatures. Signatures may naturally group into subsets. To use
the example of drill-instruction, “Quick march”, “Squad halt”, “Left turn” “Right
dress” “Change direction right – right wheel” and so on are a collection of
marching-related drill tasks. Let us call this group of tasks ‘March-type’. There

Questions and Answers 60

may be another which is only relevant to the armed infantry called ‘Arms-type’
(such as “Present arms”; “Slope arms”). A squad of infantry will respond to both
March-type and Arms-type commands (its ‘interface’ will consist of ‘signatures’
of the March-type and of the Arms-type.). On the other hand, British cavalry, who
are the most reactionary element of the British army and in 1914 were still using
horses and lances3, would respond to commands of “Gallop”, “Quit and cross
stirrups” and the like, commands meaningless to any other group of soldiers.
Each group of related signatures (related commands) is called a type. The same
type can be used by different objects, and each different object is entitled to
respond in own way.

Infantry
interface

Quick march

Halt

Left wheel

March-type

Present arms

Slope arms

Arms-type

Gallop

Cross stirrups

Horse-type

Cavalry
interface

Infantry
interface

Quick march

Halt

Left wheel

March-type

Present arms

Slope arms

Arms-type

Gallop

Cross stirrups

Horse-type

Cavalry
interface

Figure 16 - Military commands form a language

A more precise comparison with Alexander’s pattern language concepts is that
the collection of all commands for all armies is similar to a pattern pool. Each
command is similar to a pattern. Each command may be responded to somewhat
differently by different troops depending on the context (nationality; position of
other troops and buildings and so on) but it will always be responded to sensibly
and in a recognisably similar way. The collection of all commands which are
responded to by a particular interface is similar to a pattern language. If the
cavalry and infantry of a national army both respond to the commands relevant to
them in the same way (they both ‘Quick march’ in the same way, for example),
one could instead regard a national army as having a pattern language, with the

3 the last British lance-versus-lance attack occurred on the 7th September 1914 when Lieut. Col.
David Campbell charged with two troops of "B" Squadron of the 9th Queen’s Royal Lancers and
overthrew a Squadron of the German 1st Guard Dragoons. The 9th, who were founded in 1751, did
not give up horses in favour of light tanks until 1936…

The Pattern Organization 61

minor variations between units (for example, the speed at which they ‘quick
march’) being regarded as variations due to their context.
 Note, however, that an object on its own is not a pattern: we need to specify
(as a minimum) its context – which almost certainly will include other objects,
the forces which are resolved when we use it (i.e. our success criteria), and the
outcome of using it. This would (or should…) have been documented in the
manual for troop training which should be the drill-instructor’s bible. Historically,
the infantry soldier would be given none of this extraneous information, and his
response to words of command would have been to obey without question; he
would have behaved like an object (!) whereas the drill movement itself was akin
to a pattern. Drill movements are linked together into larger movements: the
spectacle of Trooping the Colour which is beloved of visitors to London and held
on HM The Queen’s official birthday in June is a complex drill pattern composed
of numerous individual smaller drill patterns which have been adjusted to fit
within the geographic confines (context) of Horse Guards Parade in Whitehall,
Central London.

 Q: I’ve just completed an object-orientated design course and the box-and-line
diagrams you used to illustrate the class and object structure of the buffer patterns
are wrong! The subclass-to-class lines shown as are OK, but the
class-to-class lines which instantiate an object are misleading. You show them as
solid lines like but shouldn’t they be shown as dashed lines like
 ?
And what about that strange shaded diamond one used in the Bridge pattern?

A: Ah…an unsuccessful attempt to simplify OMT diagrams. Lines with solid
black arrows at one end have been used as a general indication that one class
instructs another class to ‘do something’ – usually ‘create an object’. (In OMT,
one object calling another is indicated by a dashed line.) A solid line with an
arrow at one end indicates that the calling class keeps (maintains within itself) a
reference to another class. The shaded diamond at the far end of an arrow in the
Bridge pattern indicates that the object at the ‘diamond’ end is an aggregation4 of
objects at the other end (for example, a car is an aggregation of one or more
wheels). In the Bridge pattern, aggregation means that the ‘abstract definition’
does not merely know about the existence of the ‘abstract implementation’ but
contains it and is responsible for it, in the way our electric locomotive is
composed of (among other things) a large electric motor. Neither locomotive nor
motor has an independent existence. This is an example of object composition: a
way to avoid having very deep class hierarchies by splitting the hierarchies into
separate groups of classes and then letting one class reference the other.

Q: My object-orientated design course made great play of clustering design
elements which were basically alike into common families. You took the HOT
approach. Why can’t commonality analysis be used to group processes together

4 beware: the Gang of Four use the terms ‘composition’ and ‘aggregation’ in exactly the opposite
way around to that defined in the more recent Unified Modelling Language (UML)

Questions and Answers 62

A: HOT decides how much resource (firebreak; buffer) to apply and where to
apply it using the probability of external events (sparks; organizational or
business process change) happening. IT system designers have a similar problem:
how to structure systems such that the impact of subsequent change is minimal or
at least contained. This usually implies that the side-effects of a change are
minimal and well-understood. Jim Coplien in his PhD thesis (reference 3)
described one way to achieve this:

 decompose systems into families of items which have commonality
(i.e. which naturally cluster together because they have common
elements, but are not identical), then…

 within each family, identify what makes each item different (i.e.
identify variability)

Each family then forms a class hierarchy with variation becoming more
pronounced as we move down the hierarchy towards the final (concrete) class.
Commonality/variability analysis can, in principle, be applied to any system but is
most suited to software design.
.

The Pattern Organization 63

The Pattern Organization 65

BIBLIOGRAPHY

Books

1. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. “Design Patterns -

Elements of Reusable Object-Oriented Software” (Addison-Wesley 1994)

2. Shalloway A. and Trott, J.R “Patterns Explained” (Addison-Wesley 2002)

3. Coplien, J.O. “Multi-paradigm design” (PhD thesis for Free University of

Brussels - 2000)

4. Alexander C. “Notes on the synthesis of form” (Harvard University Press 1964)

5. Alexander C. “Centre for Environmental Structure Series” (Oxford University

Press)
 5a. “The timeless way of building” (1979)
 5b. “A pattern language”5 (1977)
 5c. “The Oregon experiment” (1988)

6. Alexander C. “Nature of order” four-volume series (Centre for Environmental

Structure 2003)
 6a. “The phenomenon of life”
 6b. “The process of creating life”
 6c. “A vision of the living world” (yet to be published – as at October 2004)
 6d. “The luminous ground”

7. Alexander C. “A city is not a tree” (in two parts: part 1 in Architectural Forum

Vol 122 No 1 April 1965 and part 2 in Vol 122 No 2 May 1965)

8. Alexander C. “New concepts in complexity theory” (www.katarxis3.com -

May 2003)

9a. Stewart M. “The coevolving organization” (Decomplexity Associates 2001)

9b. Stewart M. “The robust organization” (Decomplexity Associates 2003)

9c. Stewart M. “The emergent organization” (Decomplexity Associates – to be

published)

5 with Sara Ishikawa and Murray Silverstein

http://www.katarxis3.com/
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Ishikawa%2C Sara/104-5448315-2497515
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Silverstein%2C Murray/104-5448315-2497515

INDEX
A

A Pattern Language, 13
Alexander, Chris, ii, 1, 55

B
Balanced Scorecard, ii
barriers

positioning to maximize yield, 45
buffering, 13, 27

C
C-coupling, 50, 51

co-ordination of, 51
strengths of, 1

classes, 21
coevolution, 50
commonality/variability analysis, 62
communication, 50

data (routing of), 49
computers

human (for calculating tables), 48
configuration (of a patttern), 4
context (of a pattern), 3, 7
contexts

hierarchical, 8
Coplien, Jim, 62
criteria

interdependence, 9
cross-connections, 48

D
design, i, 45, 50, 55

object-orientated, 16
of IT systems and networks, 47

design patterns, 2

E
economy, 51
edge of chaos, i, 58
ensemble (of a pattern), 7
EOC, i

F
firebreak, 2, 44

in forest, 43
forces (of a pattern), 4
form (of a pattern), 7

G
Gang of Four, iv, 56

H
hierarchy, 50
high-K, 50
Highly Optimized Tolerance, i, 42, 43, 58
HOT. See Highly Optimized Tolerance

I
interface

to an object, 20
Internet, 50

L
landscape

(deformation of), 51
rugged, 10

languages
simulation, 17

M
misfit

in a design problem, 11
multifaceted

characteristic of systems, 48

N
NKCS (landscape modelling), 1
Notes on the Synthesis of Form, 7

O
Object Modelling Technique (OMT), 32
objects

coevolving, 55
OS/360 (operating system), 47

P
pattern

Adaptor, 29
Adaptor (main definition), 31
Bridge, 29
Bridge (main definition), 39
Chain of Responsibility, 29
Chain of Responsibility (main definition), 37
class and object types, 56
definition by Alexander, 5
Facade, 29
Façade (main definition), 33
Mediator, 29
Mediator (main definition), 35
veneer (prototype pattern), 27

pattern language

definition, 15
Pattern Language concept, 1
pattern pool

definition, 15
picnic site, 44
power law, 50
process

business, 55
protocols

communications, 50

R
resilience (of a network), 50
robustness

definition, 45
router

boundary, 49

S
self-organized criticality, i
semi-lattice (vs trees), 59

signatures (of an object's interface), 59

T
The Coevolving Organization, iv, i, 9, 16, 17, 23, 25,

26, 28, 49, 51, 52
The Emergent Organization, ii
The Robust Organization, 42, 43
theorem (binary system decomposition), 55

U
UML, 29, 57

Y
yield, 45

of a commercial forest, 43

The Pattern Organization

 ISBN 0-9540062-7-5

